scispace - formally typeset
Search or ask a question

Showing papers on "Very low frequency published in 2012"


Journal ArticleDOI
TL;DR: In this paper, an empirical measurement of the radiated power into the magnetosphere from ground-based very low frequency (VLF) transmitters is presented, for both daytime and nighttime, and at both the overhead and geomagnetic conjugate region.
Abstract: [1] Very Low Frequency (VLF, 3–30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ∼700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L < 2.6). We also present evidence of ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

60 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reconstruct the realistic distribution of chorus wave-normals in radiation belts for all magnetic latitudes using three-dimensional ray tracing technique, which employs K. Ronnmark's WHAMP to solve hot plasma dispersion relation along the wave packet trajectory.
Abstract: . Discrete ELF/VLF (Extremely Low Frequency/Very Low Frequency) chorus emissions are one of the most intense electromagnetic plasma waves observed in radiation belts and in the outer terrestrial magnetosphere. These waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. The objective of our study is to reconstruct the realistic distribution of chorus wave-normals in radiation belts for all magnetic latitudes. To achieve this aim, the data from the electric and magnetic field measurements onboard Cluster satellite are used to determine the wave-vector distribution of the chorus signal around the equator region. Then the propagation of such a wave packet is modeled using three-dimensional ray tracing technique, which employs K. Ronnmark's WHAMP to solve hot plasma dispersion relation along the wave packet trajectory. The observed chorus wave distributions close to waves source are first fitted to form the initial conditions which then propagate numerically through the inner magnetosphere in the frame of the WKB approximation. Ray tracing technique allows one to reconstruct wave packet properties (electric and magnetic fields, width of the wave packet in k-space, etc.) along the propagation path. The calculations show the spatial spreading of the signal energy due to propagation in the inhomogeneous and anisotropic magnetized plasma. Comparison of wave-normal distribution obtained from ray tracing technique with Cluster observations up to 40° latitude demonstrates the reliability of our approach and applied numerical schemes.

58 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the long wave oscillations and their dependence on the tidal level using two analysis techniques, fast Fourier transform (FFT) and short time Fourier Transform (STFT) to obtain time-averaged spectra corresponding to different tidal levels.

46 citations


Journal ArticleDOI
TL;DR: In this article, Cohen et al. used a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and performed a direct comparison with a sophisticated full wave model of trans-ionospheric propagation.
Abstract: [1] Ground based Very Low Frequency (VLF, 3–30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20–100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB. Citation: Cohen, M. B., N. G. Lehtinen, and U. S. Inan (2012), Models of ionospheric VLF absorption of powerful ground based transmitters, Geophys. Res. Lett., 39, L24101, doi:10.1029/2012GL054437.

43 citations


Journal ArticleDOI
TL;DR: In this article, a possible very low frequency/low frequency (VLF/LF) subionospheric precursor to a recent earthquake in Japan is reported, which is highly likely to have been a precursor to this earthquake.
Abstract: This study reports on a possible very low frequency/low frequency (VLF/LF) subionospheric precursor to a recent earthquake in Japan. As the epicenter of this large Japanese earthquake on March 11, 2011, was located just on the great-circle path from one of our VLF/LF network stations (Chofu) to the NLK US transmitter, we examined the propagation characteristics mainly associated with the signals from the NLK transmitter, as observed at three of the stations in Japan (Chofu, Kasugai and Kochi). On March 5 and 6, 2011, a remarkable anomaly was found on the path from NLK to Chofu, which is highly likely to have been a precursor to this earthquake. The anomaly in the night-time average amplitude at Chofu was characterized by a serious decrease in the signal that exceeded −4v (v: standard deviations). The anomaly was found on the same days on the other propagation paths (from NLK to both Kasugai and Kochi), although it was less enhanced. Finally, this propagation anomaly is extensively discussed with respect to the geomagnetic activity, and we also compare this anomaly with the properties related to the former 2004 Sumatra earthquake that had nearly the same magnitude as this March 11, 2011, earthquake.

42 citations


Journal ArticleDOI
TL;DR: In this paper, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of solar flares on electron concentration in the terrestrial ionospheric D-region by analyzing the amplitude and phase time variations of very low frequency (VLF) radio waves emitted by DHO transmitter (Germany) and recorded by AWESOME receiver in Belgrade (Serbia) in real time.
Abstract: In this paper, we study the influence of solar flares on electron concentration in the terrestrial ionospheric D-region by analyzing the amplitude and phase time variations of very low frequency (VLF) radio waves emitted by DHO transmitter (Germany) and recorded by the AWESOME receiver in Belgrade (Serbia) in real time. The rise of photo-ionization rate in the ionospheric D-region is a typical consequence of solar flare activity as recorded by GOES-15 satellite for the event on March 24, 2011 between 12:01 UT and 12:11 UT. At altitudes around 70 km, the photo-ionization and recombination are the dominant electron gain and electron loss processes, respectively. We analyze the relative contribution of each of these two processes in the resulting electron concentration variation in perturbed ionosphere.

29 citations


Journal ArticleDOI
TL;DR: In this paper, a model for determination of a weakly time dependent effective recombination coefficient for the perturbed terrestrial ionospheric D-region plasma was presented, where the dominant electron gain and electron loss processes were the photo-ionization and recombination, respectively.
Abstract: In this paper, we present a model for determination of a weakly time dependent effective recombination coefficient for the perturbed terrestrial ionospheric D-region plasma. We study consequences of a class M1.0 X-ray solar flare, recorded by GOES-15 satellite on February 18, 2011 between 14:00 and 14:15 UT, by analyzing the amplitude and phase real time variations of very low frequency (VLF) radio waves emitted by transmitter DHO (located in Germany) at frequency 23.4 kHz and recorded by the AWESOME receiver in Belgrade (Serbia). Our analysis is limited to ionospheric perturbations localized at altitudes around 70 km where the dominant electron gain and electron loss processes are the photo-ionization and recombination, respectively.

26 citations


Journal ArticleDOI
TL;DR: In this article, a ground-based Very Low Frequency (VLF) radio receiver of Indian Centre for Space Physics located at Khukurdaha ( 22 ° 27 ′ N, 87 ° 45 ′ E ) monitored the VLF signal at 19.8 kHz from the NWC station during a partial solar eclipse (maximum obscuration 75%) which took place on January 15, 2010.

26 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the results of a statistical study of the intensity of very low frequency electromagnetic waves recorded in the upper ionosphere, which can potentially be explained by increases in the cut-off frequency of the Earth ionosphere waveguide caused by imminent earthquakes.
Abstract: The DEMETER satellite was the first satellite specifically dedicated to the recording of electromagnetic phenomena connected with seismic activity. Almost 6.5 years of measurements provide good opportunities to analyze a unique dataset with global Earth coverage. We present the results of a statistical study of the intensity of very low frequency electromagnetic waves recorded in the upper ionosphere. Robust two-step data processing has been used. The expected unperturbed distribution of the power spectral densities of electromagnetic emissions was calculated first. Then, the power spectral densities measured in the vicinities of earthquakes are compared with the unperturbed distribution and are examined for the presence of uncommon effects related to seismic activity. The statistical significance of the observed effects is evaluated. We confirm the previously reported results of a very small, but statistically significant, decrease in wave intensities a few hours before times of main shocks using this much larger dataset. The wave intensity decrease at a frequency of about 1.7 kHz is observed only during the night and only for shallow earthquakes. This can potentially be explained by increases in the cut-off frequency of the Earth ionosphere waveguide caused by imminent earthquakes.

25 citations


Journal ArticleDOI
TL;DR: In this paper, the amplitudes of the generated ELF/VLF waves when two HF heating waves, separated by the ELF and VF frequency, are transmitted from two adjacent locations are calculated.
Abstract: [1] It is well established that Extremely Low Frequency (ELF, 0.3–3 kHz) and Very Low Frequency (VLF, 3–30 kHz) radio waves can be generated via modulated High Frequency (HF, 3–10 MHz) heating of the lower ionosphere (60–100 km). The ionospheric absorption of HF power modifies the conductivity of the lower ionosphere, which in the presence of natural currents such as the auroral electrojet, creates an ‘antenna in the sky.’ We utilize a theoretical model of the HF to ELF/VLF conversion and the ELF/VLF propagation, and calculate the amplitudes of the generated ELF/VLF waves when two HF heating waves, separated by the ELF/VLF frequency, are transmitted from two adjacent locations. The resulting ELF/VLF radiation pattern exhibits a strong directional dependence (as much as 15 dB) that depends on the physical spacing of the two HF sources. This beat wave source can produce signals 10–20 dB stronger than those generated using amplitude modulation, particularly for frequencies greater than 5–10 kHz. We evaluate recent suggestions that beating two HF waves generates ELF/VLF waves in the F-region (>150 km), and conclude that those experimental results may have misinterpreted, and can be explained strictly by the much more well established D region mechanism.

Journal ArticleDOI
TL;DR: In this article, the authors report their observations of ionospheric disturbances made by incident Gamma Rays from the Soft Gamma Repeater SGR J1550-5418 which took place on 22nd of January, 2009.
Abstract: We wish to report our observations of ionospheric disturbances made by incident Gamma Rays from the Soft Gamma Repeater SGR J1550-5418 which took place on 22nd of January, 2009. The observations were made by a loop antenna and a Gyrator-II type receiver which was tuned to the 500KW VTX station transmitting Very Low Frequency (VLF) signal at 18.2 kHz. We looked for signatures of sudden ionospheric disturbances (SID) which commenced within seconds of the observations reported by various satellites. We used Long Wave Propagation Capability code to compute the changes in the ionospheric parameters due to the repeated passage of the high energy radiation. We detected seventy six events in our VLF detector which appear to be associated with the SGR J1550-5418. We found that 28 of them are within three seconds of the satellite observations and 38 (fifty percent) of them are within seven seconds of the satellite observations. We also compute the evolution of the electron number density of the ionosphere due to this events and found that the ionosphere was becoming increasingly charged due to repeated bombardment of the high energy radiations. The lower ionospheric height went down significantly. We found convincing evidence that the source SGR J1550-5418 repeatedly caused ionospheric disturbances on the 22nd of January, 2009. The electron number density went up significantly at all the heights. The height of the lower ionosphere went down by about 15 km due to these repeated events.

Journal ArticleDOI
TL;DR: In this paper, a new type of the series of quasi-periodic (QP) very low frequency (VLF) emissions in frequency range of 1-5 kHz, and not associated with geomagnetic pulsations, has been discovered at auroral latitudes during the Finnish VLF campaign (held in December 2011).
Abstract: . A new type of the series of quasi-periodic (QP) very low frequency (VLF) emissions in frequency range of 1–5 kHz, and not associated with geomagnetic pulsations, has been discovered at auroral latitudes (L = 5.3) during the Finnish VLF campaign (held in December 2011). At least five unusually spectacular events, each with a duration of several hours, have been observed during the night under conditions of quiet geomagnetic activity (Kp = 0–1), although QPs usually occur during the daytime. Contrary to the QP emissions typically occurring during the day, the spectral structure of these QP events represented an extended, complicated sequence of repeated discrete rising VLF signals. Their duration was about 2–3 min each, with the repetition periods ranging from ~1 min to ~10 min. Two such nighttime non-typical events are reported in this paper. The fine structure of the separated QP elements may represent a mixture of the different frequency band signals, which seem to have independent origins. It was found that the periodic signals with lower frequency appear to trigger the strong dispersive upper frequency signals. The temporal dynamics of the spectral structure of the QPs studied were significantly controlled by some disturbances in the solar wind and interplanetary magnetic field (IMF). This finding is very important for future theoretical investigations because the generation mechanism of this new type of QP emissions is not yet understood.

Journal ArticleDOI
TL;DR: Moore and McCarrick as mentioned in this paper used a time-of-arrival analysis technique to provide direct experimental evidence that the beat-wave source region is located in the D-region ionosphere, and possibly the lower E-Region ionosphere (100−120 km altitude).
Abstract: [1] Modulated high frequency (HF, 3–10 MHz) heating of the ionosphere in the presence of the auroral electrojet currents is an effective method for generating extremely low frequency (ELF, 3–3000 Hz) and very low frequency (VLF, 3–30 kHz) radio waves. The amplitudes of ELF/VLF waves generated in this manner depend sensitively on the auroral electrojet current strength, which varies with time. In an effort to improve the reliability of ELF/VLF wave generation by ionospheric heating, recent experiments at the Highfrequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, have focused on methods that are independent of the strength of the auroral electrojet currents. One such potential method is so-called “beat-wave” ELF/ VLF generation. Recent experimental observations have been presented to suggest that in the absence of a significant D-region ionosphere (60–100 km altitude), an ELF/VLF source region can be created within the F-region ionosphere (150–250 km altitude). In this paper, we use a time-ofarrival analysis technique to provide direct experimental evidence that the beat-wave source region is located in the D-region ionosphere, and possibly the lower E-region ionosphere (100–120 km altitude), even when ionospheric diagnostics indicate a very weak D-layer. These results have a tremendous impact on the interpretation of recent experimental observations. Citation: Moore, R. C., S. Fujimaru, M. Cohen, M. Gookowski, and M. J. McCarrick (2012), On the altitude of the ELF/VLF source region generated during “beat-wave” HF heating experiments, Geophys. Res. Lett., 39, L18101,

Journal ArticleDOI
TL;DR: In this article, the ponderomotive nonlinearity of the ionosphere was investigated for the generation of very low frequency (VLF) waves by two HF heaters, and the results indicated that beat-wave in the VLF range prefers to be generated in the F region of ionosphere, consistent with the theory.
Abstract: [1] Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

Journal ArticleDOI
TL;DR: In this article, the authors used phase observations of VLF radio wave signals to describe substorm-driven EEP characteristics more accurately than before, using a >30 keV electron precipitation flux of 5.6 × 107 el.
Abstract: [1] Using ground-based subionospheric radio wave propagation data from two very low frequency (VLF) receiver sites, riometer absorption data, and THEMIS satellite observations, we examine in detail energetic electron precipitation (EEP) characteristics associated with two substorm precipitation events that occurred on 28 May 2010. In an advance on the analysis undertaken by Clilverd et al. (2008), we use phase observations of VLF radio wave signals to describe substorm-driven EEP characteristics more accurately than before. Using a >30 keV electron precipitation flux of 5.6 × 107 el. cm−2 sr−1 s−1 and a spectral gradient consistent with that observed by THEMIS, it was possible to accurately reproduce the peak observed riometer absorption at Macquarie Island (L = 5.4) and the associated NWC radio wave phase change observed at Casey, Antarctica, during the second, larger substorm. The flux levels were near to 80% of the peak fluxes observed in a similar substorm as studied by Clilverd et al. (2008). During the initial stages of the second substorm, a latitude region of 5 < L < 9 was affected by electron precipitation. Both substorms showed expansion of the precipitation region to 4 < L< 12 more than 30 min after the injection. While both substorms occurred at similar local times, with electron precipitation injections into approximately the same geographical region, the second expanded in an eastward longitude more slowly, suggesting the involvement of lower-energy electron precipitation. Each substorm region expanded westward at a rate slower than that exhibited eastward. This study shows that it is possible to successfully combine these multi-instrument observations to investigate the characteristics of substorms.

Journal ArticleDOI
TL;DR: In this paper, the effects of solar activity and storm activity were defined in the different trends of the very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands.
Abstract: In 2008, a radio receiver that works in very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands was developed by an Italian factory. The receiver can monitor 10 frequencies distributed in these bands, with the measurement for each of them of the electric field intensity. Since 2009, to date, six of these radio receivers have been installed throughout Europe to establish a ‘European VLF/LF Network’. At present, two of these are into operation in Italy, and the remaining four are located in Greece, Turkey, Portugal and Romania. For the present study, the LF radio data collected over about two years were analysed. At first, the day-time data and the night-time data were separated for each radio signal. Taking into account that the LF signals are characterized by ground-wave and sky-wave propagation modes, the day-time data are related to the ground wave and the night-time data to the sky wave. In this framework, the effects of solar activity and storm activity were defined in the different trends. Then, the earthquakes with M ≥5.0 that occurred over the same period were selected, as those located in a 300-km radius around each receiver/transmitter and within the 5th Fresnel zone related to each transmitter-receiver path. Where possible, the wavelet analysis was applied on the time series of the radio signal intensity, and some anomalies related to previous earthquakes were revealed. Except for some doubt in one case, success appears to have been obtained in all of the cases related to the 300 km circles in for the ground waves and the sky waves. For the Fresnel cases, success in two cases and one failure were seen in analysing the sky waves. The failure occurred in August/September, and might be related to the disturbed conditions of the ionosphere in summer.

Journal ArticleDOI
TL;DR: In this paper, the authors present the first cases of low latitude ground whistlers most likely linked with their causative lightning discharges in the conjugate zone, where the Global Lightning Dataset 360 (GLD360) detected discharges were found to be located close to the location of the recording stations, providing direct evidence of interhemispheric propagation at the low latitudes.
Abstract: [1] For decades, whistlers observed on the ground at mid and high latitudes have been used for diagnostics of Earth's plasmasphere. Whistlers have also been observed at low latitudes however, the propagation characteristics of low latitude whistlers are poorly understood thus they have not been used effectively as a diagnostic for the low latitude ionosphere. One key limitation with past studies has been lack of knowledge of the whistler source lightning location. Here we present the first cases of low latitude ground whistlers most likely linked with their causative lightning discharges in the conjugate zone. The Global Lightning Dataset 360 (GLD360) detected lightning discharges were found to be located close to the conjugate location of the recording stations, providing direct evidence of inter-hemispheric propagation at the low latitudes. A total of 864 whistlers were observed at Allahabad, India (Geomag. lat. 16.05°N; Geomag. long. 155.34°E; L = 1.08) during the night of 26 January 2011. Using GLD360 network data, we show the occurrence of thunderstorm activity between 200 and 450 km from the conjugate point of Allahabad. We also report the distribution of peak currents of whistler-producing lightning, which demonstrate a cutoff at 30 kA.

Patent
19 Nov 2012
TL;DR: In this article, a very low frequency (VLF) transmit antenna system, method, and apparatus for creating a magnetic field at low frequencies suitable for communications through the earth or other thick, solid barriers.
Abstract: There is provided a Very Low Frequency (VLF) transmit antenna system, method, and apparatus for creating a magnetic field at low frequencies suitable for communications through the earth or other thick, solid barriers. At least two loop antennas are arranged such that a magnetic field of each one of the at least two loop antennas passes through each remaining one of the at least two loop antennas, thereby closely coupling the at least two loop antennas. A full bridge Pulse Width Modulated transmitter is directly connected to each loop antenna for driving the latter. When a loop of a given loop antenna is broken and its magnetic field collapses, the transmitters connected to the remaining loop antennas increase the current in the remaining loops to maintain a constant magnetic field.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the data obtained by the analysis of recorded very low frequency (VLF) signals and line spectra for different solar flares in the period between 10:40 UT and 13:00 UT on 2011 April 22.
Abstract: One of the methods of detection and analysis of solar flares is observing the time variations of certain solar spectral lines. During solar flares, a raise of electron concentration occurs in Earth's ionosphere which results in amplitude and phase variations of the recorded very low frequency (VLF) waves. We compared the data obtained by the analysis of recorded VLF signals and line spectra for different solar flares. In this paper we treated the DHO VLF signal transmitted from Germany at the frequency of 23.4 kHz recorded by the AWESOME system in Belgrade (Serbia) during solar flares in the period between 10:40 UT and 13:00 UT on 2011 April 22.

Journal ArticleDOI
TL;DR: In this paper, the ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal, and a two-dimensional model of the signal distribution over the selected area was constructed.
Abstract: Signals from very low frequency (VLF)/ low frequency (LF) transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006). The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations. Nombre de references:

Journal ArticleDOI
TL;DR: In this paper, the results of an analysis of ground-based observations of very low frequency (VLF) emissions in Scandinavia (L ∼ 5) in April 2011 are discussed.
Abstract: The results of an analysis of ground-based observations of very low frequency (VLF) emissions in Scandinavia (L ∼ 5) in April 2011 are discussed. A detailed study is conducted of an non-typical event (April 3, 2011) of simultaneous generation of VLF chorus at frequencies below 3 kHz and quasi-periodic VLF emissions (QP) in the band of 4–6 kHz, which were not discrete emissions but consisted of separate short (about 20 s) bursts of hiss. It is shown that these emissions were mainly characterized by right-hand polarization, which indicates the location of the exit point of waves from the ionosphere near the point of ground observations. Based on an analysis of the spectral characteristics of emissions, it is concluded that the generation regions of chorus and QP emissions were located at different L shells. The appearance of QP emissions coincided with the excitation of resonance geomagnetic pulsations of the Pc4 range in the magnetosphere with a period that was close to the quasi-period of repetition of spectral forms in QP emissions. However, based on the available data, it is not possible to conclude that these geomagnetic pulsations caused the quasi-periodic generation of bursts of VLF hiss. The time shift between the peaks of QP and geomagnetic pulsations was inconsistent and varied from one burst of hiss to another. It is suggested that the discussed QP emissions were a result of the development of self-oscillations in the Earth’s radiation belts.

Journal ArticleDOI
TL;DR: In this article, it was found that the pre-midnight chorus observed on the ground occurred simultaneously with VLF chorus emissions recorded in the late morning on the low-altitude DEMETER satellite crossing the similar geomagnetic latitudes on the opposite local time sector.
Abstract: . Night-time VLF (very low frequency) chorus bursts lasting about one hour have been recorded at Finnish temporal station Kannuslehto (CGM: 64.2°; 107.9°, L = 5.3) during two VLF campaigns (on 25 February–4 March 2008 and 27 March–17 April 2011). The chorus bursts were associated with substorm development. They were accompanied by riometer absorption enhancements, which occurred simultaneously within as large longitude areas as from pre-midnight (Sodankyla, ~22:00 MLT) to the late morning (Tixie, ~03:00 MLT and Gakona, ~08:00 MLT) longitudes. It was found that the pre-midnight chorus observed on the ground occurred simultaneously with VLF chorus emissions recorded in the late morning on the low-altitude DEMETER satellite crossing the similar geomagnetic latitudes on the opposite local time sector. For the first time some evidence of simultaneous chorus burst generation in the global longitudinal scale was found (from pre-midnight to the late morning) by using direct comparison with satellite data as well as using non-direct indicator–azimuthally extended riometer absorption enhancements.

Journal ArticleDOI
TL;DR: In this paper, a dimensionless parameter, q, was calculated assuming the validity of the backward wave oscillator theory and found that the q values depend only weakly on the density; the average values of q ≈ 7 for the lower band chorus (f/fce 0.5).
Abstract: [1] According to the backward wave oscillator (BWO) model, a sharp gradient (or step-like deformation) on the electron distribution function is the most important factor in chorus generation, but such a feature is very difficult to observe directly. The properties of the step in the BWO model determine the dimensionless parameterqquantifying the excess of the energetic electron flux above the absolute-instability threshold. This parameter, in turn, is related to the frequency sweep rate of chorus elements, which we obtained by using data from the WBD instrument onboard the CLUSTER satellites in the equatorial region for more than 7000 chorus elements. Then, using the CLUSTER data for the plasma density and magnetic field, we calculatedq assuming the validity of the BWO theory and found that the q values depend only weakly on the density; the average values of q ≈ 7 for the lower band chorus (f/fce 0.5). These q values constitute a large excess over the generation threshold (q > 3) resulting from numerical simulation of discrete elements with rising frequency and are thus consistent with the simulations. Another important feature of the q parameter is the significant scatter of its values during each Cluster passage of the generation region. Using the obtained q values we estimate the relative height of the step in the electron distribution function to lie in the range from 0.01 to 0.3.

Journal ArticleDOI
TL;DR: In this article, the effects of the occultation of a solar flare was observed through lunar occultation and that too during a partial solar eclipse was quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted.
Abstract: Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8 kHz) by a receiver placed at Khukurdaha (22°27′N, 87°45′E) during the partial solar eclipse (75 %) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.

Journal ArticleDOI
TL;DR: In this article, a three-dimensional linearized nonlinear electromagnetic inversion is developed for revealing the subsurface conductivity structure using isolated very low frequency (VLF) and VLF-resistivity anomalies due to conductors that may be arbitrarily directed towards the measuring profiles and the transmitter.
Abstract: Three-dimensional linearized nonlinear electromagnetic inversion is developed for revealing the subsurface conductivity structure using isolated very low frequency (VLF) and VLF-resistivity anomalies due to conductors that may be arbitrarily directed towards the measuring profiles and the VLF transmitter. We described the 3D model using a set of variables in terms of geometric and physical parameters. These model parameters were then optimized (parametric inversion) to obtain their best estimates to fit the observations. Two VLF transmitters, i.e., the Hx, Ey (“E”) and the Hy, Ex (“H”) polarizations, respectively, can be considered jointly in inversion. After inverting several noise-free and noisy synthetic data, the results revealed that the estimated model parameters and the functionality of the approach were very good and reliable. The inversion procedure also worked well for the field data. The reliability and validity of the results after the field data inversion have been checked using data ...

Journal ArticleDOI
TL;DR: In this article, an electrostatic hybrid model was proposed for the generation and evolution of turbulence in the very low frequency (VLF) (Ωci<ω<Ωce) range, where Ωci(e) is the ion (electron) gyro frequency.
Abstract: An electrostatic hybrid model, which investigates the nonlinear evolution of a localized ion ring beam in a magnetoplasma, is described and applied to the generation and evolution of turbulence in the very low frequency (VLF) (Ωci<ω<Ωce) range, where Ωci(e) is the ion (electron) gyro frequency. Electrons are treated as a fluid and the ions with the particle-in-cell method. Although the model is electrostatic, it includes the effects of energy loss by convection of electromagnetic VLF waves out of the instability region by utilizing a phenomenological model for effective collisions with the fluid electrons. In comparison with a more conventional electrostatic hybrid model, the new model shows much more efficient extraction of energy from the ion ring beam and reduced background plasma heating over a range of parameters.

Journal ArticleDOI
TL;DR: In this paper, the day to night shift in reflection height of very low frequency (VLF) waves has been calculated using D-region conductivities derived from IRI models and the results are compared with those obtained from phase variation measurements of VLF transmissions from Rugby (England) made at Visakhapatnam (India).
Abstract: Electron density profiles for the International Reference Ionosphere (IRI) 2001 and 2007 models have been utilized in evaluating the D-region conductivity parameter in earth ionosphere wave guide calculations. The day to night shift in reflection height of very low frequency (VLF) waves has been calculated using D-region conductivities derived from IRI models and the results are compared with those obtained from phase variation measurements of VLF transmissions from Rugby (England) made at Visakhapatnam (India). The values derived from the models are found to be much lower than those obtained from the experimental measurements. The values derived from the IRI models are in good agreement with those obtained from exponential conductivity model.

Journal ArticleDOI
TL;DR: In this paper, the authors examined changes in the spectral composition of the low frequency (LF) subionospheric signals from the NRK transmitter (37.5 kHz) in Iceland that were received in Bari (Italy) relative to the earthquake that occurred in L’Aquila on April 6, 2009.
Abstract: We examined changes in the spectral composition of the low frequency (LF) subionospheric signals from the NRK transmitter (37.5 kHz) in Iceland that were received in Bari (Italy) relative to the earthquake that occurred in L’Aquila on April 6, 2009. In our previous studies, we have reported the occurrence of preseismic night-time anomalies using observations from three receivers located in Bari, Graz (Austria) and Moscow (Russia). The strongest anomalies in the signals were observed in the NRK-Bari propagation path during the period 5-6 days before the L’Aquila earthquake, as well as during the series of aftershocks. During this period, similar very low frequency (VLF)/LF amplitude anomalies were also observed along several other propagation paths that crossed the L’Aquila seismogenic zone. Spectral analysis of the LF signals filtered in the frequency range 0.28 mHz to 15 mHz shows differences in the spectra for seismo-disturbed days when compared to those for either quiet or geomagnetically disturbed days. These spectral anomalies, which are only observed in the propagation path between NRK and Bari, contain signals with periods of about 10 min to 20 min. These periodic signals are absent both in the spectra of the undisturbed signals for the control paths, and in the spectra of the signals received during geomagnetic storms. The same changes in the spectral composition were observed in the analysis of LF (40 kHz) signals from the JJY transmitter in Japan that were received in Petropavlovsk-Kamchatsky (Russia) during the occurrence of three strong earthquakes with M ≥7.0. The results of this study support the theoretical prediction that the possible mechanism for energy penetration from the origin of an earthquake through the atmosphere and into the ionosphere is based on the excitation and upward propagation of internal gravity waves.

Journal ArticleDOI
TL;DR: In this paper, a study of spectral density (magnetic field intensity) and polarization ratio methods to extract earthquake precursory signatures of the ULF data for moderate earthquakes (magnitude Mb=3.7-4.8), using a three-component induction coil magnetometer installed at Shivaji University, Kolhapur (16.40 � N, 74.15 � E), India.
Abstract: Electromagnetic anomalies covering a wide range of frequencies from ultra low frequency (ULF), very low frequency (VLF) up to very high frequency (VHF) have been observed before earthquakes. However, the ULF range emissions provide a greater source of information regarding the earthquake precursor. One of the main techniques of investigating such a precursor is by using a magnetic sensor. In this paper, we have carried out a study of spectral density (magnetic field intensity) and polarization ratio methods to extract earthquake precursory signatures of the ULF data for moderate earthquakes (magnitude Mb=3.7-4.8), using a three-component induction coil magnetometer installed at Shivaji University, Kolhapur (16.40 � N, 74.15 � E),India. Wehave applied a FastFourier Transform (FFT) procedureto calculate the spectral density of the ULF time series. We have found enhancement in ULF magnetic field intensity 3 to 5 days before the mainshockandthisspecificenhancementappeared � 3haroundthemainshocktimeinthe1-5Hzfrequencyrange.Wehave examinedULFvariationswithpolarizationvaluesandKpindexdata.Magnetic fieldintensityofULFdatacangiveimportant information about earthquake preparation processes and it can be involved in the development of earthquake prediction methodology.