scispace - formally typeset
Search or ask a question
Topic

Very low frequency

About: Very low frequency is a research topic. Over the lifetime, 1540 publications have been published within this topic receiving 24233 citations. The topic is also known as: VLF.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a Doppler-shifted cyclotron resonance between the electrons and nonducted whistler mode waves from high-power, ground-based VLF transmitters was used to account for the precipitation of energetic electrons.
Abstract: The precipitation of energetic electrons which are commonly observed in the drift loss cone east of 60/sup 0/ east longitude between Lapprox.1.6 and Lapprox.1.8 can be accounted for by a Doppler-shifted cyclotron resonance between the electrons and nonducted whistler mode waves from high-power, ground-based VLF transmitters. A ray-tracing analysis using a diffusive-equilibrium model shows that 17.1-kHz waves starting with vertical wave normals between 23/sup 0/ and 31/sup 0/ magnetic latitude cross the magnetic equator between Lapprox.1.6 and f Lapprox.1.8 with wave normals of approximately 63/sup 0/. A relativistic cyclotron-resonance analysis for the same model plasmasphere using the ray-tracing results gives an energy versus L shell dependence for the precipitated ray electron which is in excellent agreement with the observed dependence. The primary VLF transmitter is most probably the UMS transmitter located near Gorki, USSR. It transmits on 17.1 kHz. VLF records covering this frequency band were available for only three of the time periods when electrons were observed. In two cases UMS was transmitting at the time required to account for the observations. In the third case a higher frequency is required to fit the data. At the time, the NWC transmitter at North West Cape, Australia was operating atmore » 22.3 kHz. These data are consistent with a model in which weak pitch angle scattering by whistler mode waves from NWC does not completely fill the drift loss cone at the longitude of NWC.« less

84 citations

Journal ArticleDOI
TL;DR: The timing properties of the bursting atoll source 4U 1728-34 are studied as a function of its position in the X-ray color-color diagram to find that the frequencies of the kHz QPOs are well correlated with the position of the source in the color- color diagram.
Abstract: We study the timing properties of the bursting atoll source 4U 1728-34 as a function of its position in the X-ray color-color diagram. In the island part of the color-color diagram (corresponding to the hardest energy spectra), the power spectrum of 4U 1728-34 shows several features such as a band-limited noise component present up to a few tens of Hz, a low-frequency quasi-periodic oscillation (LFQPO) at frequencies between 20 and 40 Hz, a peaked noise component around 100 Hz, and one or two QPOs at kHz frequencies. In addition to these, in the lower banana (corresponding to softer energy spectra) we also find a very low frequency noise (VLFN) component below ~1 Hz. In the upper banana (corresponding to the softest energy spectra), the power spectra are dominated by the VLFN, with a peaked noise component around 20 Hz. We find that the frequencies of the kHz QPOs are well correlated with the position in the X-ray color-color diagram. For the frequency of the LFQPO and the break frequency of the broadband noise component, the relation appears more complex. Both of these frequencies increase when the frequency of the upper kHz QPO increases from 400 to 900 Hz, but at this frequency a jump in the values of the parameters occurs. We interpret this jump in terms of the gradual appearance of a QPO at the position of the break at high inferred mass accretion rate, while the previous LFQPO disappears. Simultaneously, another kind of noise appears with a break frequency of ~7 Hz, similar to the NBO of Z sources. The 100 Hz peaked noise does not seem to correlate with the position of the source in the color-color diagram but remains relatively constant in frequency. This component may be similar to several 100 Hz QPOs observed in black hole binaries.

83 citations

Journal ArticleDOI
TL;DR: In this paper, radio-wave phase scintillation was observed using the Viking spacecraft having an earth-spacecraft link very similar to that which will be used in very low-frequency (VLF) gravitational-wave searches.
Abstract: Observations of radio-wave phase scintillation are reported which used the Viking spacecraft having an earth-spacecraft link very similar to that which will be used in very low-frequency (VLF) gravitational-wave searches. The phase power-spectrum level varies by seven orders of magnitude as the sun-earth-spacecraft (elongation) angle changes from 1 to 175 deg. It is noteworthy that a broad minimum in the S-band (2.3 GHz) phase fluctuation occurs in the antisolar direction; the corresponding fractional frequency stability (square root Allan variance) is about 3 x 10 to the -14th for 1000-s integration times. A simultaneous two-frequency two-station observation indicates that the contribution to the phase fluctuation from the ionosphere is significant but dominated by the contribution from the interplanetary medium. Nondispersive tropospheric scintillation was not detected (upper limit to fractional frequency stability about 5 x 10 to the -14th). Evidently, even observations in the antisolar direction will require higher radio frequencies, phase scintillation calibration, and correlation techniques in the data processing, for detection of gravitational bursts at the anticipated strain amplitude levels of no more than 10 to the -15th.

82 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of X-ray solar flares on very low frequency (VLF) wave propagation along the Earth-ionosphere waveguide are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-Ray solar flares.
Abstract: . The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004–2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≈2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m−3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m−3 is obtained. The β parameter is found to range from 0.30–0.49 1/km and the reflection height H' to vary from 74–63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.

81 citations

Journal ArticleDOI
TL;DR: In this paper, a case study has shown that slow-onset and 'overshoot' perturbation signatures are consistent with multiple ionospheric disturbances that are associated with individual components of multipath-ducted whistlers.
Abstract: Evidence is presented for a close association betwen individual whistler ducts and conjugate ionospheric disturbances sensed by the perturbation of subionospheric VLF, LF, and MF signals. It is found that even the weakest whistlers can be associated with ionospheric disturbances in both hemispheres. A case study has shown that slow-onset and 'overshoot' perturbation signatures to be consistent with multiple ionospheric disturbances that are associated with individual components of multipath-ducted whistlers.

81 citations


Network Information
Related Topics (5)
Electric field
87.1K papers, 1.4M citations
78% related
Wave propagation
55K papers, 1.1M citations
76% related
Magnetic field
167.5K papers, 2.3M citations
76% related
Radar
91.6K papers, 1M citations
75% related
Plasma
89.6K papers, 1.3M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202232
202156
202048
201942
201852