scispace - formally typeset
Search or ask a question
Topic

Vibration fatigue

About: Vibration fatigue is a research topic. Over the lifetime, 3460 publications have been published within this topic receiving 46297 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modulated nonlinear elastic wave spectroscopy method for the evaluation of a metallic components residual fatigue life was developed, based on the Paris law and the Nazarov-Sutin crack equation.
Abstract: Predicting the residual fatigue life of a material is not a simple task and requires the development and association of many variables that as standalone tasks can be difficult to determine. This work develops a modulated nonlinear elastic wave spectroscopy method for the evaluation of a metallic components residual fatigue life. An aluminium specimen (AA6082-T6) was tested at predetermined fatigue stages throughout its fatigue life using a dual-frequency ultrasound method. A modulated nonlinear parameter was derived, which described the relationship between the generation of modulated (sideband) responses of a dual frequency signal and the linear response. The sideband generation from the dual frequency (two signal output system) was shown to increase as the residual fatigue life decreased, and as a standalone measurement method it can be used to show an increase in a materials damage. A baseline-free method was developed by linking a theoretical model, obtained by combining the Paris law and the Nazarov–Sutin crack equation, to experimental nonlinear modulation measurements. The results showed good correlation between the derived theoretical model and the modulated nonlinear parameter, allowing for baseline-free material residual fatigue life estimation. Advantages and disadvantages of these methods are discussed, as well as presenting further methods that would lead to increased accuracy of residual fatigue life detection.

51 citations

Journal ArticleDOI
TL;DR: In this paper, an event independent cumulative damage (EVICD) fatigue prediction model was developed for the fatigue damage prediction under general multiaxial stress state and loading conditions.

50 citations

Journal ArticleDOI
TL;DR: In this article, different approaches are applied to the fatigue strength assessment of ship structures, including nominal, structural hot-spot as well as the effective notch stress approach have been applied.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a uniaxial stress-based fatigue failure model was proposed to predict the fatigue life by addressing uni-axial ratchetting-fatigue interaction.

50 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed material models for the simulation of the time and temperature dependent stress-strain hystereses and damage models, based on which the whole simulation chain to determine the TMF life of a component is introduced.
Abstract: The estimation of the lifetime of thermo-mechanically loaded components by testing is very costly and time-consuming, since the high temperature cycle time in practical application dominates the test duration. Common frequencies for TMF (thermo-mechanical fatigue) tests are at about 0.01 Hz compared to 10–100 Hz at HCF (high cycle fatigue) and about 0.1–1 Hz at isothermal LCF (low cycle fatigue) tests. Therefore, the simulation of fatigue life is an important design step in the fast moving and competitive automotive industry, where the steady rise of engine power and the demand for lightweight construction concurrent with enhanced reliability require an optimised dimensioning process. Methods and models are usually derived from results made on tests with specimens, since it is possible to systematically and exactly define loading parameters and measurement categories. After an extensive test programme (tensile tests, creep tests, low cycle fatigue tests and thermo-mechanical fatigue tests with different influences on specimens) it was possible to develop material models for the simulation of the time- and temperature dependent stress–strain hystereses and damage models for the simulation of the TMF lifetime. Based on this knowledge the whole simulation chain to determine the TMF life of a component is introduced: thermal calculation, mechanical calculation and lifetime calculation. Furthermore the transferability of specimen based simulation models to real components (an alternative test piece and a cylinder head) is investigated.

50 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
85% related
Finite element method
178.6K papers, 3M citations
83% related
Deformation (engineering)
41.5K papers, 899.7K citations
81% related
Welding
206.5K papers, 1.1M citations
80% related
Fracture toughness
39.6K papers, 854.3K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
2022125
202136
202035
201941
201855