Topic
Video quality
About: Video quality is a(n) research topic. Over the lifetime, 13143 publication(s) have been published within this topic receiving 178307 citation(s).
Papers published on a yearly basis
Papers
More filters
06 Nov 2011
TL;DR: This paper uses the largest action video database to-date with 51 action categories, which in total contain around 7,000 manually annotated clips extracted from a variety of sources ranging from digitized movies to YouTube, to evaluate the performance of two representative computer vision systems for action recognition and explore the robustness of these methods under various conditions.
Abstract: With nearly one billion online videos viewed everyday, an emerging new frontier in computer vision research is recognition and search in video. While much effort has been devoted to the collection and annotation of large scalable static image datasets containing thousands of image categories, human action datasets lag far behind. Current action recognition databases contain on the order of ten different action categories collected under fairly controlled conditions. State-of-the-art performance on these datasets is now near ceiling and thus there is a need for the design and creation of new benchmarks. To address this issue we collected the largest action video database to-date with 51 action categories, which in total contain around 7,000 manually annotated clips extracted from a variety of sources ranging from digitized movies to YouTube. We use this database to evaluate the performance of two representative computer vision systems for action recognition and explore the robustness of these methods under various conditions such as camera motion, viewpoint, video quality and occlusion.
2,657 citations
TL;DR: This paper presents results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects and is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image.
Abstract: Measurement of visual quality is of fundamental importance for numerous image and video processing applications, where the goal of quality assessment (QA) algorithms is to automatically assess the quality of images or videos in agreement with human quality judgments. Over the years, many researchers have taken different approaches to the problem and have contributed significant research in this area and claim to have made progress in their respective domains. It is important to evaluate the performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of these methods. In this paper, we present results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects. The "ground truth" image quality data obtained from about 25 000 individual human quality judgments is used to evaluate the performance of several prominent full-reference image quality assessment algorithms. To the best of our knowledge, apart from video quality studies conducted by the Video Quality Experts Group, the study presented in this paper is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image. Moreover, we have made the data from the study freely available to the research community . This would allow other researchers to easily report comparative results in the future
2,190 citations
TL;DR: Context-based adaptive binary arithmetic coding (CABAC) as a normative part of the new ITU-T/ISO/IEC standard H.264/AVC for video compression is presented, and significantly outperforms the baseline entropy coding method of H.265.
Abstract: Context-based adaptive binary arithmetic coding (CABAC) as a normative part of the new ITU-T/ISO/IEC standard H.264/AVC for video compression is presented. By combining an adaptive binary arithmetic coding technique with context modeling, a high degree of adaptation and redundancy reduction is achieved. The CABAC framework also includes a novel low-complexity method for binary arithmetic coding and probability estimation that is well suited for efficient hardware and software implementations. CABAC significantly outperforms the baseline entropy coding method of H.264/AVC for the typical area of envisaged target applications. For a set of test sequences representing typical material used in broadcast applications and for a range of acceptable video quality of about 30 to 38 dB, average bit-rate savings of 9%-14% are achieved.
1,622 citations
TL;DR: Experimental data are presented that clearly demonstrate the scope of application of peak signal-to-noise ratio (PSNR) as a video quality metric and it is shown that as long as the video content and the codec type are not changed, PSNR is a valid quality measure.
Abstract: Experimental data are presented that clearly demonstrate the scope of application of peak signal-to-noise ratio (PSNR) as a video quality metric. It is shown that as long as the video content and the codec type are not changed, PSNR is a valid quality measure. However, when the content is changed, correlation between subjective quality and PSNR is highly reduced. Hence PSNR cannot be a reliable method for assessing the video quality across different video contents.
1,434 citations
Book•
01 Aug 1995TL;DR: Digital Video Processing, Second Edition, reflects important advances in image processing, computer vision, and video compression, including new applications such as digital cinema, ultra-high-resolution video, and 3D video.
Abstract: Over the years, thousands of engineering students and professionals relied on Digital Video Processing as the definitive, in-depth guide to digital image and video processing technology. Now, Dr. A. Murat Tekalp has completely revamped the first edition to reflect todays technologies, techniques, algorithms, and trends. Digital Video Processing, Second Edition, reflects important advances in image processing, computer vision, and video compression, including new applications such as digital cinema, ultra-high-resolution video, and 3D video. This edition offers rigorous, comprehensive, balanced, and quantitative coverage of image filtering, motion estimation, tracking, segmentation, video filtering, and compression. Now organized and presented as a true tutorial, it contains updated problem sets and new MATLAB projects in every chapter. Coverage includes Multi-dimensional signals/systems: transforms, sampling, and lattice conversion Digital images and video: human vision, analog/digital video, and video quality Image filtering: gradient estimation, edge detection, scaling, multi-resolution representations, enhancement, de-noising, and restoration Motion estimation: image formation; motion models; differential, matching, optimization, and transform-domain methods; and 3D motion and shape estimation Video segmentation: color and motion segmentation, change detection, shot boundary detection, video matting, video tracking, and performance evaluation Multi-frame filtering: motion-compensated filtering, multi-frame standards conversion, multi-frame noise filtering, restoration, and super-resolution Image compression: lossless compression, JPEG, wavelets, and JPEG2000 Video compression: early standards, ITU-T H.264/MPEG-4 AVC, HEVC, Scalable Video Compression, and stereo/multi-view approaches
1,349 citations