scispace - formally typeset
Search or ask a question
Topic

Vinyl acetate

About: Vinyl acetate is a research topic. Over the lifetime, 15970 publications have been published within this topic receiving 162142 citations. The topic is also known as: Ethenyl acetate & Ethenyl ethanoate.


Papers
More filters
Journal ArticleDOI
TL;DR: Interestingly, immobilized lipase showed fivefold higher catalytic activity and better thermal stability than the crude extract lipase CCL, and the biocatalyst was efficiently recycled for four successive reuses.

79 citations

Patent
07 May 1986
TL;DR: In this article, a process for stabilizing aqueous systems containing scale forming salts and inorganic particulates by adding to such systems an effective amount of selected low molecular weight water soluble polymers containing from about 10 to about 84 weight percent (meth)acrylic acid units, greater than 11 to less than about 40 weight percent acrylamido alkyl or aryl sulfonate units and from at least about 5 to about 50 weight percent of one or more units selected from vinyl esters, vinyl acetate and substituted acrylides, is provided.
Abstract: A process for stabilizing aqueous systems containing scale forming salts and inorganic particulates by adding to such systems an effective amount of selected low molecular weight water soluble polymers containing from about 10 to about 84 weight percent (meth)acrylic acid units, greater than 11 to less than about 40 weight percent acrylamido alkyl or aryl sulfonate units and from at least about 5 to about 50 weight percent of one or more units selected from vinyl esters, vinyl acetate and substituted acrylamides, is provided. The terpolymers and interpolymers used in the process provide improved phosphate, iron and zinc stabilization while maintaining their water solubility. Certain preferred polymers also exhibit a high degree of hydrolytic stability at high pH conditions.

79 citations

Journal ArticleDOI
TL;DR: In this article, various rhodium complexes were examined for oxidative arylation of ethylene with benzene to directly produce styrene, and it was shown that complex 1 is an active catalyst for both styrene formation and H-D exchange between CH3CO2D and C6H6.

79 citations

Journal ArticleDOI
TL;DR: Electroactive shape recovery experiments exhibited that depending on the applied voltage, temporary shapes in each region of sample can be either individually or simultaneously recovered and PLA/PVAc/graphene nanocomposite blends demonstrated excellent thermally and electrically actuated triple-shape memory effects besides their remarkable dual- shape memory behavior.
Abstract: This work aimed to develop a facile and broadly applicable method for fabricating multistimuli responsive triple-shape memory polymers (SMPs). Hence, herein the SMPs were prepared through the simple physical blending of two commercially available biopolymers, poly(lactic acid) (PLA) and poly(vinyl acetate) (PVAc), in the presence of robust and conductive graphene nanoplatelets. Interestingly, atomic force microscopy observations and thermal analyses revealed that the presence of nanofillers led to phase separation and appearance of two well-separated transition temperatures in the blend of these two miscible polymers. Consequently, shape memory results showed that the unfilled blend of PLA/PVAc with a single thermal transition can only show moderate heat triggered dual-shape memory behavior. While, PLA/PVAc/graphene nanocomposite blends demonstrated excellent thermally and electrically actuated triple-shape memory effects besides their remarkable dual-shape memory behavior. In addition, electrical conductivity of the blend was enhanced by ∼14 orders of magnitude in the presence of graphene. More interestingly, electroactive shape recovery experiments exhibited that depending on the applied voltage, temporary shapes in each region of sample can be either individually or simultaneously recovered.

78 citations


Network Information
Related Topics (5)
Copolymer
84K papers, 1.2M citations
95% related
Polymerization
147.9K papers, 2.7M citations
94% related
Polymer
131.4K papers, 2.6M citations
93% related
Nanocomposite
71.3K papers, 1.9M citations
87% related
Self-healing hydrogels
34.9K papers, 1.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202389
2022142
2021157
2020199
2019277
2018351