scispace - formally typeset
Search or ask a question

Showing papers on "Viremia published in 2020"


Journal ArticleDOI
TL;DR: Evidence of transplacental transmission of SARS-CoV-2 in a neonate born to a mother infected in the last trimester and presenting with neurological compromise is reported.
Abstract: SARS-CoV-2 outbreak is the first pandemic of the century. SARS-CoV-2 infection is transmitted through droplets; other transmission routes are hypothesized but not confirmed. So far, it is unclear whether and how SARS-CoV-2 can be transmitted from the mother to the fetus. We demonstrate the transplacental transmission of SARS-CoV-2 in a neonate born to a mother infected in the last trimester and presenting with neurological compromise. The transmission is confirmed by comprehensive virological and pathological investigations. In detail, SARS-CoV-2 causes: (1) maternal viremia, (2) placental infection demonstrated by immunohistochemistry and very high viral load; placental inflammation, as shown by histological examination and immunohistochemistry, and (3) neonatal viremia following placental infection. The neonate is studied clinically, through imaging, and followed up. The neonate presented with neurological manifestations, similar to those described in adult patients.

771 citations


Journal ArticleDOI
TL;DR: It is found that viral infection elicits an extremely robust intrinsic immune response where interferon-mediated responses are efficient at controlling SARS-CoV-2 replication and de novo virus production.

259 citations


Journal ArticleDOI
TL;DR: HIV reservoirs persist in all deep tissues, and blood is the main source of dispersal, which may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some people with HIV to have therapy free remission, even though deeper tissue reservoirs were not targeted.
Abstract: BACKGROUNDUnderstanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge of obtaining fresh tissues.METHODSThis observational study evaluated 6 individuals with HIV (n = 4 with viral suppression using antiretroviral [ART] therapy; n = 2 with rebound viremia after stopping ART), who provided serial blood samples before death and their bodies for rapid autopsy. HIV reservoirs were characterized by digital droplet PCR, single-genome amplification, and sequencing of full-length (FL) envelope HIV. Phylogeographic methods were used to reconstruct HIV spread, and generalized linear models were tested for viral factors associated with dispersal.RESULTSAcross participants, HIV DNA levels varied from approximately 0 to 659 copies/106 cells (IQR: 22.9-126.5). A total of 605 intact FL env sequences were recovered in antemortem blood cells and across 28 tissues (IQR: 5-9). Sequence analysis showed (a) the emergence of large, identical, intact HIV RNA populations in blood after cessation of therapy, which repopulated tissues throughout the body; (b) that multiple sites acted as hubs for HIV dissemination but that blood and lymphoid tissues were the main source; (c) that viral exchanges occurred within brain areas and across the blood-brain barrier; and (d) that migration was associated with low HIV divergence between sites and greater diversity at the recipient site.CONCLUSIONHIV reservoirs persisted in all deep tissues, and blood was the main source of dispersal. This may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some individuals with HIV to experience therapy-free remission, even though deeper tissue reservoirs were not targeted.TRIAL REGISTRATIONNot applicable.FUNDINGNIH grants P01 AI31385, P30 AI036214, AI131971-01, AI120009AI036214, HD094646, AI027763, AI134295, and AI68636.

124 citations


Posted ContentDOI
Jesus F. Bermejo-Martin1, Milagros González-Rivera2, Milagros González-Rivera3, Raquel Almansa1, Dariela Micheloud2, Ana P. Tedim, Marta Domínguez-Gil, Salvador Resino1, Marta Martín-Fernández, Pablo Ryan Murua, Felipe Pérez-García, Luis Tamayo, Raul Lopez-Izquierdo, Elena Bustamante, Cesar Aldecoa, José Manuel Gómez2, Jesús Rico-Feijoo, Antonio Orduña, Raúl Méndez4, Isabel Fernandez Natal, Gregoria Megias, Montserrat Gonzalez-Estecha3, Montserrat Gonzalez-Estecha2, Demetrio Carriedo, Cristina Doncel1, Noelia Jorge1, Alicia Ortega1, Amanda de la Fuente1, Félix del Campo5, Jose Antonio Fernandez-Ratero, Wysali Trapiello, Paula González-Jiménez4, Guadalupe Ruiz, Alyson A. Kelvin6, Alyson A. Kelvin7, Ali Toloue Ostadgavahi6, Ali Toloue Ostadgavahi7, Ruth Oneizat, Luz Maria Ruiz, Iria Miguens2, Esther Gargallo2, Iona Munoz2, Sara Pelegrin, Silvia Martín, Pablo Garcia-Olivares2, Jamil Antonio Cedeno2, Tomas Ruiz-Albi, Carolina Puertas2, Jose Ángel Berezo, Gloria Renedo, Ruben Herran, Juan Bustamante-Munguira, Pedro Enriquez, Ramón Cicuendez, Jesús Blanco, Jessica Abadia, Julia Gomez-Barquero, Nuria Mamolar, Natalia Blanca-López, Luis Jorge Valdivia, Belen Fernandez Caso, Maria Angeles Mantecon, Anna Motos8, Anna Motos1, Laia Fernández-Barat8, Laia Fernández-Barat1, Ricard Ferrer1, Ferran Barbé1, Antoni Torres8, Antoni Torres1, Rosario Menéndez1, Rosario Menéndez4, José María Eiros, David J. Kelvin6, David J. Kelvin7 
03 Sep 2020-medRxiv
TL;DR: Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.
Abstract: Background: Severe COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis like disease observed in severe COVID-19 is currently unknown. Methods: We determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution. Results: The presence of SARS-CoV-2 RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2 RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21-16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 0.89), <0.001]), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 0.88], <0.001). Conclusions: systemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.

108 citations


Journal ArticleDOI
TL;DR: It is demonstrated that bNAb therapy during ART interruption is associated with enhanced HIV-1-specific T cell responses, and whether these augmented Tcell responses can contribute to bNAB-mediated viral control remains to be determined.
Abstract: Combination antiretroviral therapy (ART) is highly effective in controlling human immunodeficiency virus (HIV)-1 but requires lifelong medication due to the existence of a latent viral reservoir1,2. Potent broadly neutralizing antibodies (bNAbs) represent a potential alternative or adjuvant to ART. In addition to suppressing viremia, bNAbs may have T cell immunomodulatory effects as seen for other forms of immunotherapy3. However, this has not been established in individuals who are infected with HIV-1. Here, we document increased HIV-1 Gag-specific CD8+ T cell responses in the peripheral blood of all nine study participants who were infected with HIV-1 with suppressed blood viremia, while receiving bNAb therapy during ART interruption4. Increased CD4+ T cell responses were detected in eight individuals. The increased T cell responses were due both to newly detectable reactivity to HIV-1 Gag epitopes and the expansion of pre-existing measurable responses. These data demonstrate that bNAb therapy during ART interruption is associated with enhanced HIV-1-specific T cell responses. Whether these augmented T cell responses can contribute to bNAb-mediated viral control remains to be determined. T cell responses specific for HIV-1 Gag peptides increased in HIV-positive recipients of two broadly neutralizing antibodies with prolonged suppression of blood viremia during antiretroviral treatment interruption.

95 citations


Posted ContentDOI
05 May 2020-medRxiv
TL;DR: A novel approach to resolving unchecked inflammation, restoring immunologic deficiencies, and reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis is demonstrated and support randomized clinical trials to assess clinical efficacy of leronlimab-mediated inhibition of CCR5 for COVID-19.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is now pandemic with nearly three million cases reported to date. Although the majority of COVID-19 patients experience only mild or moderate symptoms, a subset will progress to severe disease with pneumonia and acute respiratory distress syndrome (ARDS) requiring mechanical ventilation. Emerging results indicate a dysregulated immune response characterized by runaway inflammation, including cytokine release syndrome (CRS), as the major driver of pathology in severe COVID-19. With no treatments currently approved for COVID-19, therapeutics to prevent or treat the excessive inflammation in severe disease caused by SARS-CoV-2 infection are urgently needed. Here, in 10 terminally-ill, critical COVID-19 patients we report profound elevation of plasma IL-6 and CCL5 (RANTES), decreased CD8+ T cell levels, and SARS-CoV-2 plasma viremia. Following compassionate care treatment with the CCR5 blocking antibody leronlimab, we observed complete CCR5 receptor occupancy on macrophage and T cells, rapid reduction of plasma IL-6, restoration of the CD4/CD8 ratio, and a significant decrease in SARS-CoV-2 plasma viremia. Consistent with reduction of plasma IL-6, single-cell RNA-sequencing revealed declines in transcriptomic myeloid cell clusters expressing IL-6 and interferon-related genes. These results demonstrate a novel approach to resolving unchecked inflammation, restoring immunologic deficiencies, and reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis, and support randomized clinical trials to assess clinical efficacy of leronlimab-mediated inhibition of CCR5 for COVID-19.

74 citations


Journal ArticleDOI
TL;DR: These findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia, and the mechanisms involved in clonal expansion and persistence need to be defined to effectively target viresmia and the HIV- 1 reservoir.
Abstract: BACKGROUNDHIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODSSamples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTSHIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSIONThese findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDINGNational Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.

66 citations


Journal Article
TL;DR: The findings demonstrate the occurrence of heretofore unrecognized nonfatal HSV Type 1 viremia in both healthy and immunosuppressed leukocytes, can occur regardless of the presence of serum antibody, and may or may not be associated with the disseminated lesions.
Abstract: Recovery of herpes simplex virus (HSV) Type 1 from the blood buffy coat of four adults is reported for the first time. All of the patients had vesicular stomatitis and facial vesicles; two...

57 citations


Journal ArticleDOI
TL;DR: Overall, this study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.
Abstract: Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.

49 citations


Journal ArticleDOI
TL;DR: The data suggest that macrophages are a viral reservoir in HIV-1–infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted.
Abstract: HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses constructed with individual envelope genes that were obtained from plasma of six individuals undergoing analytic treatment interruption (ATI). M-tropic viruses could also be enriched from post-ATI plasma using macrophage-specific (CD14) but not CD4+ T cell-specific (CD3) antibodies, suggesting that M-tropic viruses had a macrophage origin. Molecular clock analysis indicated that the establishment of M-tropic HIV-1 variants predated ATI. Collectively, these data suggest that macrophages are a viral reservoir in HIV-1-infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted. These findings have implications for the design of curative strategies for HIV-1.

47 citations


Journal ArticleDOI
TL;DR: Detailed clinical, virological and immunological data are provided of a B-cell depleted patient treated with obinutuzumab for follicular lymphoma with protracted COVID-19 and viremia to achieve a sustained response.
Abstract: We provide detailed clinical, virological and immunological data of a B-cell depleted patient treated with obinutuzumab for follicular lymphoma with protracted COVID-19 and viremia. A sustained response was achieved after two courses of remdesivir and subsequent convalescent plasma therapy. Immunocompromised patients might require combined and prolonged antiviral treatment regimens.


Journal ArticleDOI
TL;DR: While commencement of ART during Fiebig stages I–II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophil, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV- induced immune changes.
Abstract: Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1–11 days after the first detection of viremia), after peak viremia (24–32 days), and during the early chronic phase (77–263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I–II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = − 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I–II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III–V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = − 0.89, P < 0.001), basophils (rho = − 0.87, P = 0.001) and lymphocytes (rho = − 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). While commencement of ART during Fiebig stages I–II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes.

Posted ContentDOI
24 Apr 2020-bioRxiv
TL;DR: It is suggested that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing in increasing patient viremia and by fueling an exacerbated cytokine response.
Abstract: Summary SARS-CoV-2 is an unprecedented worldwide health problem that requires concerted and global approaches to better understand the virus in order to develop novel therapeutic approaches to stop the COVID-19 pandemic and to better prepare against potential future emergence of novel pandemic viruses. Although SARS-CoV-2 primarily targets cells of the lung epithelium causing respiratory infection and pathologies, there is growing evidence that the intestinal epithelium is also infected. However, the importance of the enteric phase of SARS-CoV-2 for virus-induced pathologies, spreading and prognosis remains unknown. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of SARS-CoV-2 lifecycle in human intestinal epithelial cells. Our results demonstrate that human intestinal epithelial cells fully support SARS-CoV-2 infection, replication and production of infectious de-novo virus particles. Importantly, we identified intestinal epithelial cells as the best culture model to propagate SARS-CoV-2. We found that viral infection elicited an extremely robust intrinsic immune response where, interestingly, type III interferon mediated response was significantly more efficient at controlling SARS-CoV-2 replication and spread compared to type I interferon. Taken together, our data demonstrate that human intestinal epithelial cells are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing in increasing patient viremia and by fueling an exacerbated cytokine response.

Journal ArticleDOI
TL;DR: Outgrowth of a significant fraction of the viruses persisting in the latent reservoir is effectively blocked by the host antibody response, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs.
Abstract: In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.

Journal ArticleDOI
TL;DR: Screening for BKPyV viremia after HCT identifies asymptomatic patients at risk for kidney disease and reduced survival, and suggests potential changes to clinical practice, including prospective monitoring for BkPyVviremia to test virus-specific T cells to prevent or treat BK PyV replication.
Abstract: Background BK polyomavirus (BKPyV) is associated with symptomatic hemorrhagic cystitis after hematopoietic cell transplantation (HCT). Little is known about the host immune response, effectiveness of antiviral treatment, or impact of asymptomatic replication on long-term kidney function. Methods In children and young adults undergoing allogeneic HCT, we quantified BKPyV viruria and viremia (pre-HCT and at months 1-4, 8, 12, and 24 post-HCT) and tested associations of peak viremia ≥10 000 or viruria ≥109 copies/mL with estimated kidney function (eGFR) and overall survival for two years post-transplant. We examined factors associated with viral clearance by month 4 including BKPyV-specific T cells by enzyme-linked immune absorbent spot (ELISPOT) at month 3 and cidofovir use. Results We prospectively enrolled 193 participants (median age 10 years). 18% had viremia ≥10 000 copies/mL, and 45% had viruria ≥109 copies/mL in the first three months post-HCT. Among the 147 participants without cystitis (asymptomatic), 58 (40%) had any viremia. In the entire cohort and asymptomatic subset, viremia ≥10 000 copies/mL was associated with a lower creatinine/cystatin C eGFR two years post-HCT. Viremia ≥10 000 copies/mL was associated with a higher risk of death (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1-4.2). Clearing viremia was associated with detectable BKPyV-specific T cells and viremia Conclusions Screening for BKPyV viremia after HCT identifies asymptomatic patients at risk for kidney disease and reduced survival. These data suggest potential changes to clinical practice, including prospective monitoring for BKPyV viremia to test virus-specific T cells to prevent or treat BKPyV replication.

Journal ArticleDOI
TL;DR: This study shows that IgG memory B cells developing in HBV vaccinees and in rare individuals able to naturally control chronic HBV infection express a panoply of neutralizing antibodies, some of which are potent viremia suppressors in vivo.
Abstract: Rare individuals can naturally clear chronic hepatitis B virus (HBV) infection and acquire protection from reinfection as conferred by vaccination To examine the protective humoral response against HBV, we cloned and characterized human antibodies specific to the viral surface glycoproteins (HBsAg) from memory B cells of HBV vaccinees and controllers We found that human HBV antibodies are encoded by a diverse set of immunoglobulin genes and recognize various conformational HBsAg epitopes Strikingly, HBsAg-specific memory B cells from natural controllers mainly produced neutralizing antibodies able to cross-react with several viral genotypes Furthermore, monotherapy with the potent broadly neutralizing antibody Bc1187 suppressed viremia in vivo in HBV mouse models and led to post-therapy control of the infection in a fraction of animals Thus, human neutralizing HBsAg antibodies appear to play a key role in the spontaneous control of HBV and represent promising immunotherapeutic tools for achieving HBV functional cure in chronically infected humans

Journal ArticleDOI
TL;DR: A large-scale multicenter assessment of virological suppression over time and management of viremia under programmatic conditions in adult patients on first-line antiretroviral treatment in South African centers found clinical management in response toviremia was profoundly delayed, prolonging the duration of viresmia and potential for transmission.
Abstract: Author(s): Hermans, Lucas E; Carmona, Sergio; Nijhuis, Monique; Tempelman, Hugo A; Richman, Douglas D; Moorhouse, Michelle; Grobbee, Diederick E; Venter, Willem DF; Wensing, Annemarie MJ | Abstract: BACKGROUND:Uptake of antiretroviral treatment (ART) is expanding rapidly in low- and middle-income countries (LMIC). Monitoring of virological suppression is recommended at 6 months of treatment and annually thereafter. In case of confirmed virological failure, a switch to second-line ART is indicated. There is a paucity of data on virological suppression and clinical management of patients experiencing viremia in clinical practice in LMIC. We report a large-scale multicenter assessment of virological suppression over time and management of viremia under programmatic conditions. METHODS AND FINDINGS:Linked medical record and laboratory source data from adult patients on first-line ART at 52 South African centers between 1 January 2007 and 1 May 2018 were studied. Virological suppression, switch to second-line ART, death, and loss to follow-up were analyzed. Multistate models and Cox proportional hazard models were used to assess suppression over time and predictors of treatment outcomes. A total of 104,719 patients were included. Patients were predominantly female (67.6%). Median age was 35.7 years (interquartile range [IQR]: 29.9-43.0). In on-treatment analysis, suppression below 1,000 copies/mL was 89.0% at month 12 and 90.4% at month 72. Suppression below 50 copies/mL was 73.1% at month 12 and 77.5% at month 72. Intention-to-treat suppression was 75.0% and 64.3% below 1,000 and 50 copies/mL at month 72, respectively. Viremia occurred in 19.8% (20,766/104,719) of patients during a median follow-up of 152 (IQR: 61-265) weeks. Being male and below 35 years of age and having a CD4 count below 200 cells/μL prior to start of ART were risk factors for viremia. After detection of viremia, confirmatory testing took 29 weeks (IQR: 16-54). Viral resuppression to below 1,000 copies/mL without switch of ART occurred frequently (45.6%; 6,030/13,210) but was associated with renewed viral rebound and switch. Of patients with confirmed failure who remained in care, only 41.5% (1,872/4,510) were switched. The median time to switch was 68 weeks (IQR: 35-127), resulting in 12,325 person-years spent with a viral load above 1,000 copies/mL. Limitations of this study include potential missing data, which is in part addressed by the use of cross-matched laboratory source data, and the possibility of unmeasured confounding. CONCLUSIONS:In this study, 90% virological suppression below the threshold of 1,000 copies/mL was observed in on-treatment analysis. However, this target was not met at the 50-copies/mL threshold or in intention-to-treat analysis. Clinical management in response to viremia was profoundly delayed, prolonging the duration of viremia and potential for transmission. Diagnostic tools to establish the cause of viremia are urgently needed to accelerate clinical decision-making.

Journal ArticleDOI
TL;DR: Results indicate that CD8β depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivated in vivo under ART.
Abstract: The “shock and kill” strategy predicates that virus reactivation in latently infected cells is required to eliminate the human immunodeficiency virus (HIV) reservoir. In a recent study, we showed robust and persistent induction of plasma viremia in antiretroviral therapy (ART)-treated simian immunodeficiency virus-infected rhesus macaques (RMs) undergoing CD8α depletion and treated with the interleukin-15 (IL-15) superagonist N-803 (J. B. McBrien et al., Nature 578:154–159, 2020, https://doi.org/10.1038/s41586-020-1946-0). Of note, in that study we used an antibody targeting CD8α, thereby depleting NK cells, NKT cells, and γδ T cells, in addition to CD8+ T cells. In the current proof-of-concept study, we tested whether virus reactivation can be induced by administration of N-803 to simian-human chimeric immunodeficiency virus-infected, ART-treated RMs that are selectively depleted of CD8+ T cells via the CD8β-targeting antibody CD8b255R1. CD8β depletion was performed in five SHIVSF162P3-infected RMs treated with ART for 12 months and with plasma viremia consistently below 3 copies/ml. All animals received four weekly doses of N-803 starting at the time of CD8b255R1 administration. The induction of detectable plasma viremia was observed in three out of five RMs, with the level of virus reactivation seemingly correlated with the frequency of CD8+ T cells following CD8β depletion as well as the level of virus reactivation observed when the same animals underwent CD8α depletion and N-803 administration after 24 weeks of ART. These data indicate that CD8β depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivation in vivo under ART. IMPORTANCE The “shock and kill” HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8β-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy.

Journal ArticleDOI
TL;DR: The eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection are reviewed, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated.
Abstract: SUMMARY Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians’ radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.

Journal ArticleDOI
TL;DR: Transient levels of viremia contributed to higher rates and severity of ACRs, and the mechanisms of early immune activation in NAT+ recipients had a significantly higher rate of ACR occurrences.
Abstract: BACKGROUND Increased utilization of hepatitis C virus (HCV)-positive donors has increased transplantation rates. However, high levels of viremia have been documented in recipients of viremic donors. There is a knowledge gap in how transient viremia may impact acute cellular rejections (ACRs). METHODS In this study, 50 subjects received hearts from either viremic or non-viremic donors. The recipients of viremic donors were classified as nucleic acid amplification testing (NAT)+ group, and the remaining were classified as NAT-. All patients were monitored for viremia levels. Endomyocardial biopsies were performed through 180 days, evaluating the incidence of ACRs. RESULTS A total of 50 HCV-naive recipients received hearts between 2018 and 2019. A total of 22 patients (44%) who received transplants from viremic donors developed viremia at a mean period of 7.2 ± 0.2 days. At that time, glecaprevir/pibrentasvir was initiated. In the viremia period ( CONCLUSIONS Transient levels of viremia contributed to higher rates and severity of ACRs. Further investigation into the mechanisms of early immune activation in NAT+ recipients is required.

Journal ArticleDOI
TL;DR: Blood pDCs are studied in 29 HIV-infected participants who initiated antiretroviral therapy during acute infection and underwent analytic treatment interruption (ATI), suggesting that changes in blood pDC frequency and function can be used as an indicator of viral replication before detectable plasma viremia.
Abstract: Plasmacytoid dendritic cells (pDCs) are robust producers of IFNα and one of the first immune cells to respond to SIV infection. To elucidate responses to early HIV-1 replication, we studied blood pDCs in 29 HIV-infected participants who initiated antiretroviral therapy during acute infection and underwent analytic treatment interruption (ATI). We observed an increased frequency of partially activated pDCs in the blood before detection of HIV RNA. Concurrent with peak pDC frequency, we detected a transient decline in the ability of pDCs to produce IFNα in vitro, which correlated with decreased phosphorylation of IFN regulatory factory 7 (IRF7) and NF-κB. The levels of phosphorylated IRF7 and NF-κB inversely correlated with plasma IFNα2 levels, implying that pDCs were refractory to in vitro stimulation after IFNα production in vivo. After ATI, decreased expression of IFN genes in pDCs inversely correlated with the time to viral detection, suggesting that pDC IFN loss is part of an effective early immune response. These data from a limited cohort provide a critical first step in understanding the earliest immune response to HIV-1 and suggest that changes in blood pDC frequency and function can be used as an indicator of viral replication before detectable plasma viremia.

Journal ArticleDOI
TL;DR: The clinical phenotype for allele rs179008 T, carried by 30%-50% of European women, supports a beneficial effect of toning down TLR7-driven IFN-I production by pDCs during acute HIV-1 infection.
Abstract: Type I IFN (IFN-I) production by plasmacytoid DCs (pDCs) occurs during acute HIV-1 infection in response to TLR7 stimulation, but the role of pDC-derived IFN-I in controlling or promoting HIV-1 infection is ambiguous We report here a sex-biased interferogenic phenotype for a frequent single-nucleotide polymorphism of human TLR7, rs179008, displaying an impact on key parameters of acute HIV-1 infection We show allele rs179008 T to determine lower TLR7 protein abundance in cells from women, specifically - likely by diminishing TLR7 mRNA translation efficiency through codon usage The hypomorphic TLR7 phenotype is mirrored by decreased TLR7-driven IFN-I production by female pDCs Among women from the French ANRS PRIMO cohort of acute HIV-1 patients, carriage of allele rs179008 T associated with lower viremia, cell-associated HIV-1 DNA, and CXCL10 (IP-10) plasma concentrations RNA viral load was decreased by 085 log10 (95% CI, -151 to -018) among T/T homozygotes, who also exhibited a lower frequency of acute symptoms TLR7 emerges as an important control locus for acute HIV-1 viremia, and the clinical phenotype for allele rs179008 T, carried by 30%-50% of European women, supports a beneficial effect of toning down TLR7-driven IFN-I production by pDCs during acute HIV-1 infection

Journal ArticleDOI
TL;DR: This work developed an optimized HCC risk prediction model for CHB with well‐controlled viremia by nucelos(t)ide analogs (NUCs) that substantially decreased in the era of potent antiviral therapy.
Abstract: Background and aims Hepatocellular carcinoma (HCC) risk in chronic hepatitis B (CHB) substantially decreased in the era of potent antiviral therapy. We developed an optimized HCC risk prediction model for CHB with well-controlled viremia by nucelos(t)ide analogs (NUCs). Method We analysed those who achieved virological response (VR; serum HBV-DNA Results Among 1511 patients, 9.5% developed HCC. Cirrhosis on ultrasonography (adjusted HR [aHR] 2.47), age (aHR 1.04), male (aHR 1.90), platelet count 161) groups were more likely to develop HCC compared with the low-risk group (score ≤75) with statistical significances (HRs; 4.43 and 47.693 respectively; both P Conclusion CAMPAS model derived through comprehensive clinical evaluation of liver disease allowed the more delicate HCC prediction for CHB patients with well-controlled viremia by NUCs.

Journal ArticleDOI
TL;DR: A5308 was a prospective, open-label study of rilpivirine/emtricitabine/tenofovir disoproxil fumarate in ART-naive HIV controllers, defined as having HIV RNA <500 copies/mL for ≥ 12 months as mentioned in this paper.
Abstract: BACKGROUND Despite low plasma human immunodeficiency virus (HIV) RNA, HIV controllers have evidence of viral replication and elevated inflammation. We assessed the effect of antiretroviral therapy (ART) on HIV suppression, immune activation, and quality of life (QoL). METHODS A5308 was a prospective, open-label study of rilpivirine/emtricitabine/tenofovir disoproxil fumarate in ART-naive HIV controllers (N = 35), defined as having HIV RNA <500 copies/mL for ≥12 months. The primary outcome measured change in %CD38+HLA-DR+ CD8+ T cells. Residual plasma viremia was measured using the integrase single-copy assay. QoL was measured using the EQ-5D questionnaire. Outcomes were evaluated using repeated measures general estimating equations models. RESULTS Before ART, HIV controllers with undetectable residual viremia <0.6 HIV-1 RNA copies/mL had higher CD4+ counts and lower levels of T-cell activation than those with detectable residual viremia. ART use was effective in further increasing the proportion of individuals with undetectable residual viremia (pre-ART vs after 24-48 weeks of ART: 19% vs 94%, P < .001). Significant declines were observed in the %CD38+HLA-DR+CD8+ T cells at 24-48 (-4.0%, P = .001) and 72-96 (-7.2%, P < .001) weeks after ART initiation. ART use resulted in decreases of several cellular markers of immune exhaustion and in a modest but significant improvement in self-reported QoL. There were no significant changes in CD4+ counts or HIV DNA. CONCLUSIONS ART in HIV controllers reduces T-cell activation and improves markers of immune exhaustion. These results support the possible clinical benefits of ART in this population.

Journal ArticleDOI
TL;DR: The persistence of identical RV variants over years suggests that a subpopulation of HIV-infected clones frequently or continuously produce virions that may resist immune clearance; this suggests that cure strategies should target this active as well as latent reservoirs.
Abstract: During antiretroviral therapy (ART) that suppresses HIV replication to below the limit-of-quantification, virions produced during ART can be detected at low frequencies in the plasma, termed residual viremia (RV). We hypothesized that a reservoir of HIV-infected cells actively produce and release virions during ART that are potentially infectious, and that following ART-interruption, these virions can complete full-cycles of replication and contribute to rebound viremia. Therefore, we studied the dynamics of RV sequence variants in 3 participants who initiated ART after ~3 years of infection and were ART-suppressed for >6 years prior to self-initiated ART-interruptions. Longitudinal RV C2V5env sequences were compared to sequences from pre-ART plasma, supernatants of quantitative viral outgrowth assays (QVOA) of cells collected during ART, post-ART-interruption plasma, and ART-re-suppression plasma. Identical, "putatively clonal," RV sequences comprised 8-84% of sequences from each timepoint. The majority of RV sequences were genetically similar to those from plasma collected just prior to ART-initiation, but as the duration of ART-suppression increased, an increasing proportion of RV variants were similar to sequences from earlier in infection. Identical sequences were detected in RV over a median of 3 years (range: 0.3-8.2) of ART-suppression. RV sequences were identical to pre-ART plasma viruses (5%), infectious viruses induced in QVOA (4%) and rebound viruses (5%) (total n = 21/154 (14%) across the 3 participants). RV sequences identical to ART-interruption "rebound" sequences were detected 0.1-7.4 years prior to ART-interruption. RV variant prevalence and persistence were not associated with detection of the variant among rebound sequences. Shortly after ART-re-suppression, variants that had been replicating during ART-interruptions were detected as RV (n = 5). These studies show a dynamic, virion-producing HIV reservoir that contributes to rekindling infection upon ART-interruption. The persistence of identical RV variants over years suggests that a subpopulation of HIV-infected clones frequently or continuously produce virions that may resist immune clearance; this suggests that cure strategies should target this active as well as latent reservoirs.

Journal ArticleDOI
TL;DR: The data support an important and physiological role for inhibitory receptor-mediated regulation of CD4+ T cells in early HCV infection, irrespective of outcome, with persistent HCV viremia leading to sustained upregulation of PD-1 and CTLA-4.
Abstract: CD4+ T cell failure is a hallmark of chronic hepatitis C virus (HCV) infection. However, the mechanisms underlying the impairment and loss of virus-specific CD4+ T cells in persisting HCV infection remain unclear. Here we examined HCV-specific CD4+ T cells longitudinally during acute infection with different infection outcomes. We found that HCV-specific CD4+ T cells are characterized by expression of a narrower range of T cell inhibitory receptors compared with CD8+ T cells, with initially high expression levels of PD-1 and CTLA-4 that were associated with negative regulation of proliferation in all patients, irrespective of outcome. In addition, HCV-specific CD4+ T cells were phenotypically similar during early resolving and persistent infection and secreted similar levels of cytokines. However, upon viral control, CD4+ T cells quickly downregulated inhibitory receptors and differentiated into long-lived memory cells. In contrast, persisting viremia continued to drive T cell activation and PD-1 and CTLA-4 expression, and blocked T cell differentiation, until the cells quickly disappeared from the circulation. Our data support an important and physiological role for inhibitory receptor-mediated regulation of CD4+ T cells in early HCV infection, irrespective of outcome, with persistent HCV viremia leading to sustained upregulation of PD-1 and CTLA-4.

Journal ArticleDOI
TL;DR: Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.
Abstract: Infusion of the broadly neutralizing antibody VRC01 has been evaluated in individuals chronically infected with HIV-1. Here, we studied how VRC01 infusions affected viral rebound after cessation of antiretroviral therapy (ART) in 18 acutely treated and durably suppressed individuals. Viral rebound occurred in all individuals, yet VRC01 infusions modestly delayed rebound and participants who showed a faster decay of VRC01 in serum rebounded more rapidly. Participants with strains most sensitive to VRC01 or with VRC01 epitope motifs similar to known VRC01-susceptible strains rebounded later. Upon rebound, HIV-1 sequences were indistinguishable from those sampled at diagnosis. Across the cohort, participant-derived Env showed different sensitivity to VRC01 neutralization (including 2 resistant viruses), yet neutralization sensitivity was similar at diagnosis and after rebound, indicating the lack of selection for VRC01 resistance during treatment interruption. Our results showed that viremia rebounded despite the absence of HIV-1 adaptation to VRC01 and an average VRC01 trough of 221 μg/mL. Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.

Journal ArticleDOI
TL;DR: High levels of dengue virus infection among children with undifferentiated febrile illness in Kenya suggests several viruses from novel lineages are shown.
Abstract: Little is known about the extent and serotypes of dengue viruses circulating in Africa. We evaluated the presence of dengue viremia during 4 years of surveillance (2014-2017) among children with febrile illness in Kenya. Acutely ill febrile children were recruited from 4 clinical sites in western and coastal Kenya, and 1,022 participant samples were tested by using a highly sensitive real-time reverse transcription PCR. A complete case analysis with genomic sequencing and phylogenetic analyses was conducted to characterize the presence of dengue viremia among participants during 2014-2017. Dengue viremia was detected in 41.9% (361/862) of outpatient children who had undifferentiated febrile illness in Kenya. Of children with confirmed dengue viremia, 51.5% (150/291) had malaria parasitemia. All 4 dengue virus serotypes were detected, and phylogenetic analyses showed several viruses from novel lineages. Our results suggests high levels of dengue virus infection among children with undifferentiated febrile illness in Kenya.

Journal ArticleDOI
Cuiyan Tan1, Songbiao Li1, Yingjian Liang1, Meizhu Chen1, Jing Liu1 
TL;DR: It is shown that massive replication and releasing into blood of SARS-CoV-2 and secondary inflammation storm may lead to injury of multiple organs and poor prognosis, so positive COVID-19 nucleic acid test in blood may be a good forecasting marker of rapid deterioration of CO VID-19 pneumonia.
Abstract: COVID-19 has raised worldwide concern as spiraling into a pandemic. Reports about comprehensive investigation of COVID-19 viremia are extremely scanty. Herein, we present four COVID-19 patients with positive SARS-CoV-2 nucleic acid test in blood, accounting for 12.12% of 33 detected cases. Rapid deterioration of these cases with septic shock, accompanying with lung CT images enlarged rapidly, decrease of blood oxygen, heart rate drop (with asynchrony of hypoxemia) accompanied with SARS-CoV-2 viremia. It indicates that massive replication and releasing into blood of SARS-CoV-2 and secondary inflammation storm may lead to injury of multiple organs and poor prognosis. So, positive COVID-19 nucleic acid test in blood may be a good forecasting marker of rapid deterioration of COVID-19 pneumonia. In addition, clearance of viremia may indicate tendency for recovery.