scispace - formally typeset
Search or ask a question
Topic

Virtual network

About: Virtual network is a research topic. Over the lifetime, 8795 publications have been published within this topic receiving 116758 citations.


Papers
More filters
Proceedings ArticleDOI
07 Dec 2008
TL;DR: The proposed approach uses the MapReduce paradigm to parallelize tools and manage their execution, machine virtualization to encapsulate their execution environments and commonly used data sets into flexibly deployable virtual machines, and networkvirtualization to connect resources behind firewalls/NATs while preserving the necessary performance and the communication environment.
Abstract: This paper proposes and evaluates an approach to the parallelization, deployment and management of bioinformatics applications that integrates several emerging technologies for distributed computing. The proposed approach uses the MapReduce paradigm to parallelize tools and manage their execution, machine virtualization to encapsulate their execution environments and commonly used data sets into flexibly deployable virtual machines, and network virtualization to connect resources behind firewalls/NATs while preserving the necessary performance and the communication environment. An implementation of this approach is described and used to demonstrate and evaluate the proposed approach. The implementation integrates Hadoop, Virtual Workspaces, and ViNe as the MapReduce, virtual machine and virtual network technologies, respectively, to deploy the commonly used bioinformatics tool NCBI BLAST on a WAN-based test bed consisting of clusters at two distinct locations, the University of Florida and the University of Chicago. This WAN-based implementation, called CloudBLAST, was evaluated against both non-virtualized and LAN-based implementations in order to assess the overheads of machine and network virtualization, which were shown to be insignificant. To compare the proposed approach against an MPI-based solution, CloudBLAST performance was experimentally contrasted against the publicly available mpiBLAST on the same WAN-based test bed. Both versions demonstrated performance gains as the number of available processors increased, with CloudBLAST delivering speedups of 57 against 52.4 of MPI version, when 64 processors on 2 sites were used. The results encourage the use of the proposed approach for the execution of large-scale bioinformatics applications on emerging distributed environments that provide access to computing resources as a service.

348 citations

Proceedings ArticleDOI
05 Oct 2015
TL;DR: This paper defines the generic VNF chain routing optimization problem and devise a mixed integer linear programming formulation and draws conclusions on the trade-offs achievable between legacy Traffic Engineering ISP goals and novel combined TE-NFV goals.
Abstract: Network Functions Virtualization (NFV) is incrementally deployed by Internet Service Providers (ISPs) in their carrier networks, by means of Virtual Network Function (VNF) chains, to address customers' demands. The motivation is the increasing manageability, reliability and performance of NFV systems, the gains in energy and space granted by virtualization, at a cost that becomes competitive with respect to legacy physical network function nodes. From a network optimization perspective, the routing of VNF chains across a carrier network implies key novelties making the VNF chain routing problem unique with respect to the state of the art: the bitrate of each demand flow can change along a VNF chain, the VNF processing latency and computing load can be a function of the demands traffic, VNFs can be shared among demands, etc. In this paper, we provide an NFV network model suitable for ISP operations. We define the generic VNF chain routing optimization problem and devise a mixed integer linear programming formulation. By extensive simulation on realistic ISP topologies, we draw conclusions on the trade-offs achievable between legacy Traffic Engineering (TE) ISP goals and novel combined TE-NFV goals.

348 citations

Patent
07 Nov 1991
TL;DR: In this paper, a fault isolation technique is used to suppress the fault status of a network device when it is determined that the device is not defective, which is called fault isolation.
Abstract: A network management system includes a user interface, a virtual network and a device communication manager. The virtual network includes models which represent network entities and model relations which represent relations between network entities. Each model includes network data relating to a corresponding network device and one or more inference handlers for processing the network data to provide user information. The system performs a fault isolation technique wherein the fault status of a network device is suppressed when it is determined that the device is not defective. User displays include hierarchical location views and topological views of the network configuration. Network devices are represented on the displays by multifunction icons which permit the user to select additional displays showing detailed information regarding different aspects of the corresponding network device.

328 citations

Patent
21 Mar 2008
TL;DR: In this paper, techniques for configuring intercommunications between multiple computing nodes, such as multiple virtual machine nodes hosted on one or more physical computing machines or systems, are described, such that other communication manager modules may appropriately forward or otherwise process such communications.
Abstract: Techniques are described for configuring intercommunications between multiple computing nodes, such as multiple virtual machine nodes hosted on one or more physical computing machines or systems. In some situations, virtual networks may be established and maintained for groups of computing nodes, such as those operated by or on behalf of various users. Such virtual networks may be established in some situations by automatically configuring various communication manager modules to associate communications from a computing node belonging to a virtual network with one or more networking identifiers associated with the virtual network, such that other communication manager modules may appropriately forward or otherwise process such communications.

322 citations

Journal ArticleDOI
TL;DR: This work proposes a multiphase distributed vulnerability detection, measurement, and countermeasure selection mechanism called NICE, which is built on attack graph-based analytical models and reconfigurable virtual network-based countermeasures to significantly improve attack detection and mitigate attack consequences.
Abstract: Cloud security is one of most important issues that has attracted a lot of research and development effort in past few years. Particularly, attackers can explore vulnerabilities of a cloud system and compromise virtual machines to deploy further large-scale Distributed Denial-of-Service (DDoS). DDoS attacks usually involve early stage actions such as multistep exploitation, low-frequency vulnerability scanning, and compromising identified vulnerable virtual machines as zombies, and finally DDoS attacks through the compromised zombies. Within the cloud system, especially the Infrastructure-as-a-Service (IaaS) clouds, the detection of zombie exploration attacks is extremely difficult. This is because cloud users may install vulnerable applications on their virtual machines. To prevent vulnerable virtual machines from being compromised in the cloud, we propose a multiphase distributed vulnerability detection, measurement, and countermeasure selection mechanism called NICE, which is built on attack graph-based analytical models and reconfigurable virtual network-based countermeasures. The proposed framework leverages OpenFlow network programming APIs to build a monitor and control plane over distributed programmable virtual switches to significantly improve attack detection and mitigate attack consequences. The system and security evaluations demonstrate the efficiency and effectiveness of the proposed solution.

317 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
88% related
Wireless network
122.5K papers, 2.1M citations
87% related
Server
79.5K papers, 1.4M citations
87% related
Wireless ad hoc network
49K papers, 1.1M citations
87% related
Mobile computing
51.3K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202396
2022281
2021428
2020696
2019850
2018930