scispace - formally typeset
Search or ask a question
Topic

Virus

About: Virus is a research topic. Over the lifetime, 136914 publications have been published within this topic receiving 5209107 citations. The topic is also known as: infectious agent & viruses.


Papers
More filters
Journal ArticleDOI
04 Feb 2016-Nature
TL;DR: It is shown that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.
Abstract: Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.

548 citations

PatentDOI
TL;DR: It is shown that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure and suggesting a potential mechanism for targeting Gag to membrane rafts.
Abstract: The present invention provides for testing methods to determine an effective testing agent that affects the activity of the HIV Gag protein at the plasma membrane of a cell, and specifically, effecting changes in the structural conformation of at least one fatty acid of PI(4,5)P 2 , a member of a family of differentially phosphorylated phosphatidylinositides, wherein inhibition of the extension of such fatty acid into the MA domain of the Gag protein reduces binding of Gag to the plasma membrane, thereby inhibiting virus particle assembly and subsequent replication of the HIV virus.

548 citations

Journal ArticleDOI
05 Oct 2006-Nature
TL;DR: It is found that mice infected with a virus containing all eight genes from the pandemic virus showed marked activation of pro-inflammatory and cell-death pathways by 24 h after infection that remained unabated until death on day 5, in contrast with smaller host immune responses as measured at the genomic level.
Abstract: The influenza pandemic of 1918-19 was responsible for about 50 million deaths worldwide. Modern histopathological analysis of autopsy samples from human influenza cases from 1918 revealed significant damage to the lungs with acute, focal bronchitis and alveolitis associated with massive pulmonary oedema, haemorrhage and rapid destruction of the respiratory epithelium. The contribution of the host immune response leading to this severe pathology remains largely unknown. Here we show, in a comprehensive analysis of the global host response induced by the 1918 influenza virus, that mice infected with the reconstructed 1918 influenza virus displayed an increased and accelerated activation of host immune response genes associated with severe pulmonary pathology. We found that mice infected with a virus containing all eight genes from the pandemic virus showed marked activation of pro-inflammatory and cell-death pathways by 24 h after infection that remained unabated until death on day 5. This was in contrast with smaller host immune responses as measured at the genomic level, accompanied by less severe disease pathology and delays in death in mice infected with influenza viruses containing only subsets of 1918 genes. The results indicate a cooperative interaction between the 1918 influenza genes and show that study of the virulence of the 1918 influenza virus requires the use of the fully reconstructed virus. With recent concerns about the introduction of highly pathogenic avian influenza viruses into humans and their potential to cause a worldwide pandemic with disastrous health and economic consequences, a comprehensive understanding of the global host response to the 1918 virus is crucial. Moreover, understanding the contribution of host immune responses to virulent influenza virus infections is an important starting point for the identification of prognostic indicators and the development of novel antiviral therapies.

548 citations

Journal ArticleDOI
Kala Jessie1, Mun Yik Fong1, Shamala Devi1, Sai Kit Lam1, K. Thong Wong1 
TL;DR: Tissue specimens from patients with serologically or virologically confirmed dengue infections are studied by immunohistochemistry (IHC) and in situ hybridization (ISH), to localize viral antigen and RNA, respectively.
Abstract: Dengue viral antigens have been demonstrated in several types of naturally infected human tissues, but little is known of whether these same tissues have detectable viral RNA. We studied tissue specimens from patients with serologically or virologically confirmed dengue infections by immunohistochemistry (IHC) and in situ hybridization (ISH), to localize viral antigen and RNA, respectively. IHC was performed on specimens obtained from 5 autopsies and 24 biopsies and on 20 blood-clot samples. For ISH, antisense riboprobes to the dengue E gene were applied to tissue specimens in which IHC was positive. Viral antigens were demonstrated in Kupffer and sinusoidal endothelial cells of the liver; macrophages, multinucleated cells, and reactive lymphoid cells in the spleen; macrophages and vascular endothelium in the lung; kidney tubules; and monocytes and lymphocytes in blood-clot samples. Positive-strand viral RNA was detected in the same IHC-positive cells found in the spleen and blood-clot samples. The strong, positive ISH signal in these cells indicated a high copy number of viral RNA, suggesting replication.

548 citations

Journal ArticleDOI
TL;DR: It is shown that beginning 3–4 weeks after disease onset, T-cell responses to multiple myelin autoepitopes arise in an ordered progression and may play a pathologic role in chronic disease.
Abstract: Multiple sclerosis (MS) is a T cell-mediated autoimmune demyelinating disease1, which may be initiated by a virus infection2. Theiler's murine encephalomyelitis virus (TMEV), a natural mouse pathogen, is a picornavirus that induces a chronic, CD4+ T cell-mediated demyelinating disease with a clinical course and histopathology similar to that of chronic progressive MS (ref. 3). Demyelination in TMEV-infected mice is initiated by a mononu-clear inflammatory response mediated by virus-specific CD4+ T cells targeting virus, which chronically persists in the CNS (ref. 4–6). We show that beginning 3–4 weeks after disease onset, T-cell responses to multiple myelin autoepitopes arise in an ordered progression and may play a pathologic role in chronic disease. Kinetic and functional studies show that T-cell responses to the immunodominant myelin proteolipid protein epitope (PLP139–151) did not arise because of cross-reactivity between TMEV and self epitopes (that is, molecular mimicry)7, 8, but because of de novo priming of self-reactive T cells to sequestered autoantigens released secondary to virus-specific T cell-mediated demyelination (that is, epitope spreading)9, 10. Epitope spreading is an important alternate mechanism to explain the etiology of virus-induced organ-specific autoimmune diseases.

547 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
94% related
Antibody
113.9K papers, 4.1M citations
89% related
Virulence
35.9K papers, 1.3M citations
89% related
Vaccination
65.1K papers, 1.7M citations
87% related
Antigen
170.2K papers, 6.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20234,275
20228,706
20213,455
20203,848
20193,309