scispace - formally typeset
Search or ask a question
Topic

Virus

About: Virus is a research topic. Over the lifetime, 136914 publications have been published within this topic receiving 5209107 citations. The topic is also known as: infectious agent & viruses.


Papers
More filters
Journal ArticleDOI
TL;DR: A structural homology exists between the two viruses, despite minimal primary sequence conservation, and a synthetic peptide containing the HAV-specific amino acid sequence of one of these sites induced anti-HAV-neutralizing antibodies.
Abstract: Comparative surface feature analyses of the VP1 sequences of hepatitis A virus (HAV) and poliovirus type 1 allowed an alignment of the two sequences and an identification of probable HAV neutralization antigenic sites. A synthetic peptide containing the HAV-specific amino acid sequence of one of these sites induced anti-HAV-neutralizing antibodies. It is concluded that a structural homology exists between the two viruses, despite minimal primary sequence conservation.

1,149 citations

Journal ArticleDOI
TL;DR: Results indicate that TTV would be a novel DNA virus with a possible capacity to induce posttransfusion non-A to G hepatitis.

1,148 citations

Journal ArticleDOI
TL;DR: The limited nucleotide sequence identity betweenGBV-A, GBV-B and HCV sequences suggests that a novel virus, tentatively named GB virus C, may be responsible for some cases of non-A/B/B, non-C/C/D/E hepatitis.
Abstract: Two viruses, GB virus A (GBV-A) and GB virus B (GBV-B), were recently identified in the GB hepatitis agent. Human sera containing antibodies that recognize GBV-A and/or GBV-B recombinant proteins were subjected to polymerase chain reaction studies with degenerate oligonucleotides capable of amplifying a segment of the putative helicase genes from GBV-A, GBV-B or hepatitis C virus. Novel sequences related to members of the Flaviviridae were identified in sera from 12 individuals including 4 individuals with hepatitis. The limited nucleotide sequence identity between GBV-A, GBV-B and HCV sequences suggests that a novel virus, tentatively named GB virus C, may be responsible for some cases of non-A, non-B, non-C, non-D, non-E hepatitis.

1,146 citations

Journal ArticleDOI
04 May 1984-Science
TL;DR: Serum samples from 88 percent of patients with AIDS and from 79 percent of homosexual men with signs and symptoms that frequently precede AIDS, but from less than 1 percent of heterosexual subjects, have antibodies reactive against antigens of HTLV-III, and the major immune reactivity appears to be directed against p41, the presumed envelope antigen of the virus.
Abstract: In cats, infection with T-lymphotropic retroviruses can cause T-cell proliferation and leukemia or T-cell depletion and immunosuppression. In humans, some highly T4 tropic retroviruses called HTLV-I can cause T-cell proliferation and leukemia. The subgroup HTLV-II also induces T-cell proliferation in vitro, but its role in disease is unclear. Viruses of a third subgroup of human T-lymphotropic retroviruses, collectively designated HTLV-III, have been isolated from cultured cells of 48 patients with acquired immunodeficiency syndrome (AIDS). The biological properties of HTLV-III and immunological analyses of its proteins show that this virus is a member of the HTLV family, and that it is more closely related to HTLV-II than to HTLV-I. Serum samples from 88 percent of patients with AIDS and from 79 percent of homosexual men with signs and symptoms that frequently precede AIDS, but from less than 1 percent of heterosexual subjects, have antibodies reactive against antigens of HTLV-III. The major immune reactivity appears to be directed against p41, the presumed envelope antigen of the virus.

1,145 citations

Journal ArticleDOI
22 Apr 1993-Nature
TL;DR: The results illustrate that partially and sequen-tially induced (protective) immunity or complete exhaustion of T-cell immunity (high zone tolerance) are quantitatively different points on the scale of immunity; some viruses exploit the latter possibility to persist in an immunocompetent host.
Abstract: Viruses that are non- or poorly cytopathic have developed various strategies to avoid elimination by the immune system and to persist in the host. Acute infection of adult mice with the noncytopathic lymphocytic choriomeningitis virus (LCMV) normally induces a protective cytotoxic T-cell response that also causes immunopathology. But some LCMV strains (such as DOCILE (LCMV-D) or Cl-13 Armstrong (Cl-13)) derived from virus carrier mice tend to persist after acute infection of adult mice without causing lethal immunopathological disease. Tendency to persist correlates with tropism, rapidity of virus spread and virus mutations. We report here that these LCMV isolates may persist because they induce most of the specific antiviral CD8+ cytotoxic T cells so completely that they all disappear within a few days and therefore neither eliminate the virus nor cause lethal immunopathology. The results illustrate that partially and sequentially induced (protective) immunity or complete exhaustion of T-cell immunity (high zone tolerance) are quantitatively different points on the scale of immunity; some viruses exploit the latter possibility to persist in an immunocompetent host.

1,140 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
94% related
Antibody
113.9K papers, 4.1M citations
89% related
Virulence
35.9K papers, 1.3M citations
89% related
Vaccination
65.1K papers, 1.7M citations
87% related
Antigen
170.2K papers, 6.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20234,275
20228,706
20213,455
20203,848
20193,309