scispace - formally typeset
Search or ask a question
Topic

Virus

About: Virus is a research topic. Over the lifetime, 136914 publications have been published within this topic receiving 5209107 citations. The topic is also known as: infectious agent & viruses.


Papers
More filters
Journal ArticleDOI
19 Apr 2001-Nature
TL;DR: The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely, and the failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.
Abstract: The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

653 citations

Journal ArticleDOI
TL;DR: The close relationship between KS and K SHV gene expression is consistent with the hypothesis that KSHV is directly involved in the etiology and pathogenesis of KS, and detects viral gene expression in prostatic tissue, supporting a possible mechanism for sexual transmission of KSHv.
Abstract: The recent discovery of DNA sequences of a new human herpesvirus in Kaposi's sarcoma (KS) has fueled speculation that this virus might cause KS. The mere presence, however, of a virus in a complex multicellular tumor like KS could just as well be construed as evidence of a passenger agent. We sought stronger evidence linking the KS-associated herpesvirus (KSHV) to tumor formation by using in situ hybridization to investigate the specificity, constancy, and timing of KSHV gene expression in KS tumor cells. Here we document expression of a 700-nucleotide viral RNA in every KS tumor examined, from the earliest histologically recognizable stage to advanced tumors in which the vast majority of identifiable spindle tumor cells contain this transcript. Two other KSHV RNAs were also detected in a smaller fraction of the tumor cells in all but the earliest lesion. These viral RNAs were expressed to relatively low levels in this subset; because one of these RNAs encodes a major viral capsid protein, these cells may be producing KSHV. We did not find these KSHV genes expressed in a variety of other tumors and proliferative processes, but we did detect viral gene expression in prostatic tissue, supporting a possible mechanism for sexual transmission of KSHV. The close relationship between KS and KSHV gene expression is consistent with the hypothesis that KSHV is directly involved in the etiology and pathogenesis of KS.

652 citations

Journal ArticleDOI
TL;DR: It is shown that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity, suggesting that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival.
Abstract: Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of ≈80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a “passenger virus” that secondarily infects MCC tumors.

651 citations

Journal ArticleDOI
05 Feb 2021-Nature
TL;DR: In this paper, the authors report chronic SARS-CoV-2 with reduced sensitivity to neutralizing antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days.
Abstract: SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days. However, following convalescent plasma therapy we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies.

651 citations

Journal ArticleDOI
12 Apr 2013-Science
TL;DR: A direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence is demonstrated and the results suggest that therapies targeting IFn-I may help control persistent virus infections.
Abstract: During persistent viral infections, chronic immune activation, negative immune regulator expression, an elevated interferon signature, and lymphoid tissue destruction correlate with disease progression. We demonstrated that blockade of type I interferon (IFN-I) signaling using an IFN-I receptor neutralizing antibody reduced immune system activation, decreased expression of negative immune regulatory molecules, and restored lymphoid architecture in mice persistently infected with lymphocytic choriomeningitis virus. IFN-I blockade before and after establishment of persistent virus infection resulted in enhanced virus clearance and was CD4 T cell–dependent. Hence, we demonstrate a direct causal link between IFN-I signaling, immune activation, negative immune regulator expression, lymphoid tissue disorganization, and virus persistence. Our results suggest that therapies targeting IFN-I may help control persistent virus infections.

651 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
94% related
Antibody
113.9K papers, 4.1M citations
89% related
Virulence
35.9K papers, 1.3M citations
89% related
Vaccination
65.1K papers, 1.7M citations
87% related
Antigen
170.2K papers, 6.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20234,275
20228,706
20213,455
20203,848
20193,309