scispace - formally typeset

Topic

Visual Word

About: Visual Word is a(n) research topic. Over the lifetime, 12332 publication(s) have been published within this topic receiving 308523 citation(s).
Papers
More filters

Proceedings ArticleDOI
Sivic1, Zisserman1Institutions (1)
13 Oct 2003
TL;DR: An approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video, represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion.
Abstract: We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of the video within a shot is used to track the regions in order to reject unstable regions and reduce the effects of noise in the descriptors. The analogy with text retrieval is in the implementation where matches on descriptors are pre-computed (using vector quantization), and inverted file systems and document rankings are used. The result is that retrieved is immediate, returning a ranked list of key frames/shots in the manner of Google. The method is illustrated for matching in two full length feature films.

6,757 citations


Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,292 citations


Journal ArticleDOI
B.S. Manjunath1, Wei-Ying Ma1Institutions (1)
TL;DR: Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy.
Abstract: Image content based retrieval is emerging as an important research area with application to digital libraries and multimedia databases. The focus of this paper is on the image processing aspects and in particular using texture information for browsing and retrieval of large image data. We propose the use of Gabor wavelet features for texture analysis and provide a comprehensive experimental evaluation. Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy. An application to browsing large air photos is illustrated.

3,895 citations


Proceedings ArticleDOI
23 Jun 2014
Abstract: Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the OverFeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the OverFeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the OverFeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.

3,068 citations


Book
12 Jun 1992
TL;DR: For programmers and students interested in parsing text, automated indexing, its the first collection in book form of the basic data structures and algorithms that are critical to the storage and retrieval of documents.
Abstract: An edited volume containing data structures and algorithms for information retrieved including a disk with examples written in C. For programmers and students interested in parsing text, automated indexing, its the first collection in book form of the basic data structures and algorithms that are critical to the storage and retrieval of documents.

2,355 citations


Network Information
Related Topics (5)
Feature extraction

111.8K papers, 2.1M citations

91% related
Feature (computer vision)

128.2K papers, 1.7M citations

89% related
Image segmentation

79.6K papers, 1.8M citations

88% related
Support vector machine

73.6K papers, 1.7M citations

87% related
Convolutional neural network

74.7K papers, 2M citations

86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202144
202066
201993
2018161
2017399
2016652