scispace - formally typeset
Search or ask a question
Topic

Voltage-controlled oscillator

About: Voltage-controlled oscillator is a research topic. Over the lifetime, 23896 publications have been published within this topic receiving 231875 citations. The topic is also known as: VCO.


Papers
More filters
Journal ArticleDOI
TL;DR: An on-chip CMOS relaxation oscillator with voltage averaging feedback using a reference proportional to supply voltage is presented and achieves 7x reduction in accumulated jitter (at 1500th cycle) as compared to a oscillator without VAF.
Abstract: An on-chip CMOS relaxation oscillator with voltage averaging feedback using a reference proportional to supply voltage is presented. A voltage-averaging feedback (VAF) concept is proposed to overcome conventional relaxation oscillator problems such as sensitivity to comparator delay, aging, and flicker noise of current sources. A test-chip with typical frequency of 14.0 MHz was fabricated in a 0.18 μm standard CMOS process and measured frequency variations of ±0.16 % for supply changes from 1.7 to 1.9 V and ±0.19% for temperature changes from -40 to 125°C. The prototype draws 25 μA from a 1.8 V supply, occupies 0.04 mm2, and achieves 7x reduction in accumulated jitter (at 1500th cycle) as compared to a oscillator without VAF.

179 citations

Patent
14 Jun 1989
TL;DR: In this paper, a phase comparator is used to compare a phase of a voltage of a driving signal and a phase representing the vibration phase of the ultrasonic transducer to derive a phase difference there between which is applied to the voltage controlled oscillator as a frequency control voltage such that the driving signal is phase-locked with a resonance frequency of the transducers.
Abstract: Circuit for use in a surgical operation including a phase lock loop having a voltage controlled oscillator, and a phase comparator for comparing a phase of a voltage of a driving signal and a phase of a signal representing the vibration phase of the ultrasonic transducer to derive a phase difference therebetween which is applied to the voltage controlled oscillator as a frequency control voltage such that the driving signal is phase-locked with a resonance frequency of the ultrasonic transducer, the improvement being characterized in that during a start period, a reference signal having a frequency which is increased monotonously is applied to the phase comparator such that the frequency of the driving signal is increased until the driving signal is phase-locked with the vibration phase of the ultrasonic transducer vibrating at the resonance frequency. After the phase-lock condition has been attained, the signal representing the vibration phase of the ultrasonic transducer is applied to the phase comparator instead of the reference signal.

179 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of loop filter characteristics, phase-frequency detector, and phase noise of the open-loop voltage-controlled oscillator (VCO) on the PLL output spectrum is quantified.
Abstract: This work addresses the problem of noise analysis of phase-locked loops (PLLs). The problem is formulated as a stochastic differential equation and is solved in the presence of circuit white noise sources yielding the spectrum of the PLL output. Specifically, the effect of loop filter characteristics, phase-frequency detector, and phase noise of the open-loop voltage-controlled oscillator (VCO) on the PLL output spectrum is quantified. These results are derived using a full nonlinear analysis of the VCO in the feedback loop and cannot be predicted using traditional linear analyses or the phase noise analysis of open-loop oscillators. The computed spectrum matches well with measured results; specifically, the shape of the output spectrum matches very well with measured PLL output spectra reported in the literature for different kinds of loop filters and phase detectors. The PLL output spectrum computation only requires the phase noise of the VCO, loop filter and phase detector noise, phase detector gain, and loop filter transfer function and does not require the transient simulation of the entire PLL which can be very expensive. The noise analysis technique is illustrated with some examples.

178 citations

Patent
03 Jun 1988
TL;DR: In this article, a phase-locked loop driven by a reference frequency source such as a crystal oscillator and including a variable delay circuit is proposed to provide precise delays. But the phase error signal representative of phase error is developed and applied to vary the amount of delay until the phase errors are eliminated.
Abstract: A circuit for providing precise delays includes a phase-locked loop driven by a reference frequency source such as a crystal oscillator and including a variable delay circuit. The output of the oscillator is applied to the delay circuit and the non-delayed and delayed signals are compared in a phase comparator. An error signal representative of phase error is developed and applied to vary the amount of delay until the phase error is eliminated. A precise delay referenced to the oscillator frequency is therefore achieved.

176 citations

Patent
17 Jun 2002
TL;DR: In this article, the authors present an integrated VCO having an improved tuning range over process and temperature variations, where a tuning control voltage input falling within a VCO tuning range is adjusted by the tuning control circuit in response to the state variable.
Abstract: An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.

176 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
91% related
Amplifier
163.9K papers, 1.3M citations
88% related
Integrated circuit
82.7K papers, 1M citations
86% related
Transistor
138K papers, 1.4M citations
85% related
Electronic circuit
114.2K papers, 971.5K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022344
2021269
2020388
2019469
2018530