scispace - formally typeset
Search or ask a question
Topic

Voltage-controlled oscillator

About: Voltage-controlled oscillator is a research topic. Over the lifetime, 23896 publications have been published within this topic receiving 231875 citations. The topic is also known as: VCO.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new concept for quadrature coupling of LC oscillators is introduced and demonstrated on a 5 GHz CMOS voltage-controlled oscillator. But the technique is limited to a single oscillator and it is not suitable for a large number of oscillators.
Abstract: A new concept for quadrature coupling of LC oscillators is introduced and demonstrated on a 5-GHz CMOS voltage-controlled oscillator (VCO). It uses the second harmonic of the outputs to couple the oscillators. The technique provides quadrature over a wide tuning range without introducing any increase in phase noise or power consumption. The VCO is tunable between 4.57 and 5.21 GHz and has a phase noise lower than -124 dBc/Hz at 1-MHz offset over the entire tuning range. The worst-case measured image rejection is 33 dB. The circuit draws 8.75 mA from a 2.5-V supply.

312 citations

Journal ArticleDOI
TL;DR: In this article, a transformer-feedback voltage-controlled oscillator (TF-VCO) is proposed to achieve low-phase-noise and low-power designs even at a supply below the threshold voltage.
Abstract: A transformer-feedback voltage-controlled oscillator (TF-VCO) is proposed to achieve low-phase-noise and low-power designs even at a supply below the threshold voltage. The advantages of the proposed TF-VCO are described together with its detailed analysis and its cyclo-stationary characteristic. Two prototypes using the proposed TF-VCO techniques are demonstrated in a standard 0.18-/spl mu/m CMOS process. The first design using two single-ended transformers is operated at 1.4 GHz at a 0.35-V supply using PMOS transistors whose threshold voltage is around 0.52 V. The power consumption is 1.46 mW while the measured phase noise is -128.6 dBc/Hz at 1-MHz frequency offset. Using an optimum differential transformer to maximize quality factor and to minimize the chip area, the second design is operated at 3.8 GHz at a 0.5-V supply with power consumption of 570 /spl mu/W and a measured phase noise of -119 dBc/Hz at 1-MHz frequency offset. The figures of merits are comparable or better to that of other state-of-the-art VCO designs operating at much higher supply voltage.

309 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this paper, a prototype frequency synthesizer for the DCS-1800 system has been integrated in a standard 0.4 /spl mu/m CMOS process without any external components.
Abstract: A prototype frequency synthesizer for the DCS-1800 system has been integrated in a standard 0.4 /spl mu/m CMOS process without any external components. A completely monolithic design has been made feasible by using an optimized hollow-coil inductor low-phase-noise voltage-controlled oscillator (VCO). The frequency divider is an eight-modulus phase-switching prescaler that achieves the same speed as asynchronous dividers. The die area was minimized by using a dual-path active loop filter. An indirect linearization technique was implemented for the VCO gain. The resulting architecture is a fourth-order, type-2 charge-pump phase-locked loop. The measured settling time is 300 /spl mu/s, and the phase noise is up to -123 dBc/Hz at 600 kHz and -138 dBc/Hz at 3 MHz offset.

291 citations

Patent
31 Jan 1997
TL;DR: In this paper, a digital compensation filtering technique is provided that enables indirect phase locked loop modulation with a digital modulation data stream having a bandwidth that exceeds, perhaps by an order of magnitude, the bandwidth characteristic of the phase-locked loop.
Abstract: A digital compensation filtering technique is provided that enables indirect phase locked loop modulation with a digital modulation data stream having a bandwidth that exceeds, perhaps by an order of magnitude, the bandwidth characteristic of the phase locked loop. A modulation data receiver is provided for receiving from a modulation source digital input modulation data having a bandwidth that exceeds the cutoff frequency characteristic of the phase locked loop frequency response. A digital processor is coupled to the modulation data receiver for digitally processing the input modulation data to amplify modulation data at frequencies higher than the phase locked loop cutoff frequency. This digital processor is connected to the phase locked loop frequency divider to modulate the divider based on the digitally-processed input modulation data, whereby a voltage controlled oscillator of the phase locked loop is controlled to produce a modulated output carrier signal having a modulation bandwidth that exceeds the phase locked loop cutoff frequency. The digital processing of the modulation data can be implemented by adapting a digital FIR Gaussian transmit filter such that its filter characteristic reflects the intended modulation data amplification as well as enables Gaussian Frequency Shift Keyed modulation. With this implementation, no additional componentry beyond the PLL system is needed to implement the digital modulation data processing provided by the invention.

282 citations

Journal ArticleDOI
TL;DR: It is shown that the quadrature LC oscillator is best treated as two strongly coupled, nominally identical oscillators that are locked to the same frequency.
Abstract: We show that the quadrature LC oscillator is best treated as two strongly coupled, nominally identical oscillators that are locked to the same frequency. Differential equations that extend Adler's description of locking to strong injection reveal the full dynamics of this circuit. With a simplifying insight, the analysis reveals all the modes of the oscillator, their stability, the effects of mismatch on quadrature phase accuracy, and through a novel use of the analysis, phase noise.

280 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
91% related
Amplifier
163.9K papers, 1.3M citations
88% related
Integrated circuit
82.7K papers, 1M citations
86% related
Transistor
138K papers, 1.4M citations
85% related
Electronic circuit
114.2K papers, 971.5K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022344
2021269
2020388
2019469
2018530