scispace - formally typeset
Search or ask a question
Topic

Voltage optimisation

About: Voltage optimisation is a research topic. Over the lifetime, 13831 publications have been published within this topic receiving 201336 citations.


Papers
More filters
Proceedings ArticleDOI
12 Jun 2005
TL;DR: In this article, the authors analyze the assumptions of DC power flow, and make an attempt at quantifying these using indexes, and answer the question of how low the X/R ratio of line parameters can be, and what is the maximal deviation from the perfect flat voltage which still allows DC Power Flow to be acceptably accurate.
Abstract: In recent days almost every study concerning the analyses of power systems for market related purposes uses DC power flow. DC power flow is a simplification of a full power flow looking only at active power flows. Aspects as voltage support and reactive power management are not considered. However, such simplifications cannot always be justified and might sometimes be unrealistic. In this paper authors analyze the assumptions of DC power flow, and make an attempt at quantifying these using indexes. Among other, the paper answers the question of how low the X/R ratio of line parameters can be, and what is the maximal deviation from the perfect flat voltage which still allows DC power flow to be acceptably accurate.

391 citations

Journal ArticleDOI
TL;DR: In this paper, an adaptive control algorithm is proposed to balance the need for power quality (voltage regulation) with the desire to minimize power loss in a radial distribution circuit with a high penetration of photovoltaic cells.
Abstract: We show how an adaptive control algorithm can improve the performance of distributed reactive power control in a radial distribution circuit with a high penetration of photovoltaic (PV) cells. The adaptive algorithm is designed to balance the need for power quality (voltage regulation) with the desire to minimize power loss. The adaptation law determines whether the objective function minimizes power losses or voltage regulation based on whether the voltage at each node remains close enough to the voltage at the substation. The reactive power is controlled through the inverter on the PV cells. The control signals are determined based on local instantaneous measurements of the real and reactive power at each node. We use the example of a single branch radial distribution circuit to demonstrate the ability of the adaptive scheme to effectively reduce voltage variations while simultaneously minimizing the power loss in the studied cases. Simulations verify that the adaptive schemes compares favorably with local and global schemes previously reported in the literature.

390 citations

01 Jan 2016
TL;DR: The voltage stability of electric power systems is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for reading voltage stability of electric power systems. Maybe you have knowledge that, people have search hundreds times for their chosen books like this voltage stability of electric power systems, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some harmful bugs inside their desktop computer. voltage stability of electric power systems is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the voltage stability of electric power systems is universally compatible with any devices to read.

381 citations

Journal ArticleDOI
TL;DR: It is shown that the choice of the control parameters uniquely determines the corresponding equilibrium point of the closed-loop voltage and reactive power dynamics, and a necessary and sufficient condition for local exponential stability of that equilibrium point is given.
Abstract: We propose a consensus-based distributed voltage control (DVC) that solves the problem of reactive power sharing in autonomous inverter-based microgrids with dominantly inductive power lines and arbitrary electrical topology. Opposed to other control strategies available thus far, the control presented here does guarantee a desired reactive power distribution in steady state while only requiring distributed communication among inverters, i.e., no central computing nor communication unit is needed. For inductive impedance loads and under the assumption of small phase angle differences between the output voltages of the inverters, we prove that the choice of the control parameters uniquely determines the corresponding equilibrium point of the closed-loop voltage and reactive power dynamics. In addition, for the case of uniform time constants of the power measurement filters, a necessary and sufficient condition for local exponential stability of that equilibrium point is given. The compatibility of the DVC with the usual frequency droop control for inverters is shown and the performance of the proposed DVC is compared with the usual voltage droop control via simulation of a microgrid based on the Conseil International des Grands Reseaux Electriques (CIGRE) benchmark medium voltage distribution network.

380 citations

Journal ArticleDOI
TL;DR: In this paper, a mathematical formulation of the optimal reactive power control (optimal VAR control) problem and results from tests of the algorithm are presented in order to minimize the real power losses in the system.
Abstract: A mathematical formulation of the optimal reactive power control (optimal VAR control) problem and results from tests of the algorithm are presented in this paper. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the load bus voltages, and the operating limits of the control variables, i.e., the transformer tap positions, generator terminal voltages and switchable reactive power sources. Real power economic dispatch is accomplished by standard techniques.

367 citations


Network Information
Related Topics (5)
AC power
80.9K papers, 880.8K citations
96% related
Electric power system
133K papers, 1.7M citations
94% related
Voltage
296.3K papers, 1.7M citations
88% related
Wind power
99K papers, 1.5M citations
87% related
Capacitor
166.6K papers, 1.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202363
2022181
202114
202030
201942
201891