scispace - formally typeset
Search or ask a question
Topic

Voltage regulator

About: Voltage regulator is a research topic. Over the lifetime, 33536 publications have been published within this topic receiving 350859 citations.


Papers
More filters
01 Jan 2015

343 citations

Journal ArticleDOI
TL;DR: In this paper, a figure of merit called droop index (DI) is introduced in order to improve the performance of dc microgrid, which is a function of normalized current sharing difference and losses in the output side of the converters.
Abstract: This paper addresses load current sharing and cir- culating current issues of parallel-connected dc-dc converters in low-voltage dc microgrid. Droop control is the popular technique for load current sharing in dc microgrid. The main drawbacks of the conventional droop method are poor current sharing and drop in dcgrid voltage due tothe droop action. Circulating current issue will also arise due to mismatch in the converters output voltages. In this work, a figure of merit called droop index (DI) is introduced in order to improve the performance of dc microgrid, which is a function of normalized current sharing difference and losses in the output side of the converters. This proposed adaptive droop con- trol method minimizes the circulating current and current sharing difference between the converters based on instantaneous virtual resistance Rdroop .U singRdroop shifting, the proposed method also eliminates the tradeoff between current sharing difference and voltage regulation. The detailed analysis and design procedure are explained for two dc-dc boost converters connected in paral- lel. The effectiveness of the proposed method is verified by detailed simulation and experimental studies.

343 citations

Journal ArticleDOI
TL;DR: In this paper, a voltage-sourced rectifier control scheme for use with AC/DC/AC variable speed drives is presented, which directly calculates the duration of time spent on the zero state and on each switching state adjacent to the reference vector, over a constant switching interval.
Abstract: A voltage-sourced rectifier control scheme for use with AC/DC/AC variable speed drives is presented. A control scheme is derived that directly calculates the duration of time spent on the zero state and on each switching state adjacent to the reference vector, over a constant switching interval, in order to drive the line current vector to the reference vector. In addition, under transient conditions, when deadbeat control is not possible, a control scheme is presented that ensures that the line current vector is driven in the direction of the reference current vector. The current reference for the rectifier controller is derived from the bus voltage error and a feedforward term based on the estimated converter output power. The proposed space vector-based rectifier regulator is shown to exhibit improved harmonic and transient performance over existing per-phase duty cycle prediction methods, especially at modulation indices near unity. The deadbeat control of the rectifier input current is accomplished every half-cycle with constant switching frequency while still symmetrically distributing the zero state within the half-cycle period. >

337 citations

Journal ArticleDOI
TL;DR: This paper presents a distributed hierarchical control framework to ensure reliable operation of dc microgrid (MG) clusters and an adaptive droop method is proposed for this level, which determines droop coefficients according to the state-of-charge of batteries automatically.
Abstract: This paper presents a distributed hierarchical control framework to ensure reliable operation of dc microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level, which determines droop coefficients according to the state-of-charge (SOC) of batteries automatically. A small-signal model is developed to investigate effects of the system parameters, constant power loads, as well as line impedance between the MGs on stability of these systems. In the secondary level, a distributed consensus-based voltage regulator is introduced to eliminate the average voltage deviation over the MGs. This distributed averaging method allows the power flow control between the MGs to be achieved at the same time, as it can be accomplished only at the cost of having voltage deviation inside the system. Another distributed policy is employed then to regulate the power flow among the MGs according to their local SOCs. The proposed distributed controllers on each MG communicate with only the neighbor MGs through a communication infrastructure. Finally, the developed small-signal model is expanded for MG clusters with all the proposed control loops. The effectiveness of the proposed hierarchical scheme is verified through detailed hardware-in-the-loop simulations.

332 citations

Journal ArticleDOI
TL;DR: In this article, the output voltage of the preregulator is always self-adjusted so that the voltage across the linear current regulator of the LED string with the highest voltage drop is kept at the minimum value that is required to maintain the desired string current.
Abstract: This paper presents an LED driver circuit consisting of multiple linear current regulators and a voltage preregulator with adaptive output voltage. In the proposed driver, the output voltage of the preregulator is always self-adjusted so that the voltage across the linear current regulator of the LED string with the highest voltage drop is kept at the minimum value that is required to maintain the desired string current. Because the linear current regulators in this driver operate with the minimum voltages, the driver efficiency is maximized. The performance of the proposed driver was experimentally verified on a four-string LED setup with eight white LEDs in each string. The measured efficiency improvement of the linear current regulators was approximately 15% compared to the corresponding implementation with a constant preregulator voltage.

321 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
92% related
Capacitor
166.6K papers, 1.4M citations
91% related
Electric power system
133K papers, 1.7M citations
90% related
Wind power
99K papers, 1.5M citations
83% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022212
2021320
2020699
2019947
2018973