scispace - formally typeset
Search or ask a question
Topic

Voltage regulator

About: Voltage regulator is a research topic. Over the lifetime, 33536 publications have been published within this topic receiving 350859 citations.


Papers
More filters
Journal ArticleDOI
J. Minibock1, Johann W. Kolar1
TL;DR: A novel mains voltage proportional input current control concept eliminating the multiplication of the output voltage controller output and the mains ac phase voltages for the derivation of mains phase current reference values of a three-phase/level/switch pulsewidth-modulated (VIENNA) rectifier system is proposed.
Abstract: This paper proposes a novel mains voltage proportional input current control concept eliminating the multiplication of the output voltage controller output and the mains ac phase voltages for the derivation of mains phase current reference values of a three-phase/level/switch pulsewidth-modulated (VIENNA) rectifier system. Furthermore, the concept features low input current ripple amplitude as, e.g., achieved for space-vector modulation, a low amplitude of the third harmonic of the current flowing into the output voltage center point, and a wide range of modulation. The practical realization of the analog control concept as well as experimental results for application with a 5-kW prototype of the pulsewidth-modulated rectifier are presented. Furthermore, a control scheme which relies only on the absolute values of the input phase currents and a modified control scheme which does not require information about the mains phase voltages are presented.

77 citations

Patent
Daniel M. Dreps1, Raymond Paul Rizzo1
28 Nov 1994
TL;DR: In this article, an on-chip voltage controlled oscillator for use in an analog phase locked loop receives power from a voltage regulator which greatly reduces the noise seen by the voltage control oscillator.
Abstract: An on-chip voltage controlled oscillator for use in an analog phase locked loop receives power from a voltage regulator which greatly reduces the noise seen by the voltage controlled oscillator. The voltage controlled oscillator has a DC bias section which supplies a relatively constant current to the multivibrator to assure a minimum operating frequency. A control signal is used to provide additional current which increases the speed of oscillation. The bias current reduces the transfer characteristics (MHz/volt) of the voltage controlled oscillator making it more immune to noise in the control signal.

77 citations

Patent
15 Mar 2001
TL;DR: In this paper, an integrated voltage/current/power regulator/switch (VCPRS) system and method are disclosed in which regulator/switching circuitry is vertically integrated on top of an existing integrated circuit.
Abstract: An integrated voltage/current/power regulator/switch (VCPRS) system and method are disclosed in which regulator/switch circuitry is vertically integrated on top of an existing integrated circuit. The present invention does not require additional integrated circuit chip area for the regulator pass device as is required in the prior art, and by virtue of its construction provides a significantly reduced on-resistance as compared to all prior art implementations. The present invention both stabilizes the power supply for large area integrated circuits and permits individual areas of the integrated circuit to have switched power capability, a highly desirable feature in low power and battery power applications. The present invention permits an increase in the power supply rejection ratio (PSRR) for digital, analog, and especially mixed-signal integrated circuit designs by permitting various circuit blocks to have localized power regulation that is obtained from a common power supply plane within the integrated circuit framework. Finally, the present invention appears to be the only economically practical method of addressing the power supply regulation requirements of modern and future integrated microprocessor designs.

77 citations

Patent
09 Jun 1999
TL;DR: In this paper, a bidirectional voltage converter cooperates with two electrical power supply systems and corresponding differentiated voltage level charges and two batteries operating at a first and a second voltage level.
Abstract: The invention is designed for vehicles having two electrical power supply systems and corresponding differentiated voltage level charges and two batteries operating at a first and a second voltage level. A bidirectional voltage converter cooperates with both systems whose input and output stages are galvanically insulated and include a switch. The batteries are connected to said input and output at a first and a second voltage level so that said bidirectional converter can provide a first reduced voltage mode and a second increased voltage mode . The passive components, e.g. the magnetic components and capacitances, of said stages have been chosen to provide an identical transitional behavior in both modes when a disruption occurs in the regulating system either in the charge or the input voltage.

77 citations

Proceedings ArticleDOI
01 Nov 2013
TL;DR: A new dc source less topology has been introduced for multilevel inverters that uses crossover switches to generate the maximum output voltage levels and a voltage controller has been proposed to keep the DC capacitor voltage regulated in case of load changes.
Abstract: Renewable energy resources are widely used because of providing green and economic energy for the consumers. Multilevel inverters generates low harmonic waveforms at the output, therefore they are most suitable for energy conversion to deliver efficient power to the loads from renewable energy sources like photovoltaic systems. In this paper a new dc source less topology has been introduced for multilevel inverters. It uses crossover switches to generate the maximum output voltage levels. The Crossover Switches Cell (CSC) multilevel inverter can generate all possible voltage level among the DC supply and regulated DC voltage capacitor. A voltage controller has been proposed to keep the DC capacitor voltage regulated in case of load changes. The simulation results prove the capability of CSC in producing maximum voltage levels as well as the controller ability in balancing the capacitor voltage even if the DC supply voltage changes.

77 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
92% related
Capacitor
166.6K papers, 1.4M citations
91% related
Electric power system
133K papers, 1.7M citations
90% related
Wind power
99K papers, 1.5M citations
83% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022212
2021320
2020699
2019947
2018973