scispace - formally typeset
Search or ask a question
Topic

Voltage regulator

About: Voltage regulator is a research topic. Over the lifetime, 33536 publications have been published within this topic receiving 350859 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combined feed forward and state feedback control structure for the compensation voltages of DVRs is developed based on power stage analysis, and design guidelines are proposed for the control gains and the inverter switching frequency of a DVR system.
Abstract: This paper discusses the control of the compensation voltages in dynamic voltage restorers (DVR). It first analyzes the power circuit of a DVR system in order to come up with appropriate control limitations and control targets for the compensation voltage control. Based on this power stage analysis, a combined feed forward and state feedback control structure for the compensation voltages of DVRs is developed. This paper also discusses the time delay problems inherent in the digital control system of a DVR. Digital control systems normally have control delay from the sampling period, the switching frequency of the inverter, the sensor transmission time, etc. The control delay increases the dimension of the system transfer function. This makes the control system more unstable. This paper analyzes the control performance related with the control delay, closed loop damping factor, and the output filter parameters in DVR systems. Based on the control system analysis, design guidelines are proposed for the control gains and the inverter switching frequency of DVRs. The proposed theory is verified by an experimental DVR system with a full digital controller.

121 citations

Patent
14 Dec 1992
TL;DR: In this article, a microprocessor based uninterruptible power supply generates an AC electrical output power from an AC input source when the input source is within settable voltage limits and from an auxiliary source of DC power when the output source is outside said voltage limits, and an average current feedback loop provides the output voltage regulation and utilizes current limiting to provide output current limiting for protection against short circuits and overloads.
Abstract: A microprocessor based uninterruptible power supply generates an AC electrical output power from an AC input source when the AC input source is within settable voltage limits and from an auxiliary source of DC power when the AC input source is outside said the voltage limits. The microprocessor provides monitoring of the AC input voltage to determine its amplitude and frequency, and uses this information to set the magnitude and frequency of the AC output voltage and to select the source of the AC output power. A power factor improvement circuit boosts the selected source to a high DC voltage which is inverted by a chopper circuit to produce a high frequency AC voltage is rectified and sent to a PWM inverter to produce the AC output power. An average current feedback loop provides the output voltage regulation and utilizes current limiting to provide output current limiting for protection against short circuits and overloads. A voltage phase relationship is maintained between the AC input power and AC output power to eliminate voltage and current transients at transfer times between the AC and DC input sources. A serial data communications port sends data sent over a network that includes signals indicative of the status of the uninterruptible power supply and receives data from the network for controlling operation of the uninterruptible power supply.

121 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the most popular pulse width modulation (PWM) methods regarding the ICT flux for applications to three-phase loads is explained. And an optimal PWM method that minimizes the size of ICT design is developed.
Abstract: Parallel multilevel converters are now widely used in the industry, particularly in high-current applications such as voltage regulator modules. The reduction of the output current ripple and the increase of its frequency are possible due to the use of interleaving techniques and, as a consequence, the filters associated with the converter may be reduced. The current ripple reduction in each commutation cell of a parallel converter is possible by the use of intercell transformers (ICT). The design of such a special magnetic component depends very strongly on the magnetic flux flowing through their cores. In three-phase systems coupled by ICTs, the injection of zero-sequence signals in the output voltage reference changes this flux. The aim of this paper is to explain the influence of the most popular pulse width modulation (PWM) methods regarding the ICT flux for applications to three-phase loads. An optimal PWM method that minimizes the size of the ICT design is developed. Experimental results verify the analysis presented in this paper and validate the flux reduction provided by the developed optimal zero-sequence signals.

121 citations

Journal ArticleDOI
A. Waizman1, Chee-Yee Chung1
TL;DR: Extended adaptive voltage positioning (EAVP) is a new robust methodology for the design and analysis of a low impedance resonant free power delivery network, which utilizes and extends the theory of AVP that is commonly used in voltage regulator module (VRM) design and operation.
Abstract: Extended adaptive voltage positioning (EAVP) is a new robust methodology for the design and analysis of a low impedance resonant free power delivery network, which utilizes and extends the theory of adaptive voltage positioning (AVP) that is commonly used in voltage regulator module (VRM) design and operation. Using EAVP, uncertainties in design guardband noise budget can be removed, resulting in significant performance bin-split improvement and cost reduction. Design optimization of decoupling capacitors with EAVP will be illustrated by using both time and frequency domain analysis.

121 citations

Patent
28 Aug 2001
TL;DR: In this paper, an adaptive biasing circuit senses the loading condition change and provides additional biasing current to momentarily increase the operating current of the low-dropout regulator to improve transient response.
Abstract: A linear voltage regulator, such as a low-dropout regulator, supplies power to one or more digital circuits within a computer system. The low-dropout regulator provides a substantially constant output voltage independent of loading conditions. The low-dropout regulator is biased at a relatively low operating current for steady-state operation to improve power efficiency of the low-dropout regulator. During a loading condition change, an adaptive biasing circuit senses the loading condition change and provides additional biasing current to momentarily increase the operating current of the low-dropout regulator to improve transient response.

121 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
92% related
Capacitor
166.6K papers, 1.4M citations
91% related
Electric power system
133K papers, 1.7M citations
90% related
Wind power
99K papers, 1.5M citations
83% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022212
2021320
2020699
2019947
2018973