scispace - formally typeset
Search or ask a question
Topic

Volume fraction

About: Volume fraction is a research topic. Over the lifetime, 16312 publications have been published within this topic receiving 374181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the fracture characteristics of the reinforcing particles were rationalized using a proposed fracture criterion, and the yield strength and the elastoplastic deformation of such composites containing a high volume fraction of glassy particles were accurately modeled using a shear lag model and a self-consistent effective medium approach.

232 citations

Journal ArticleDOI
TL;DR: In this paper, a bimodal grain size was achieved in the as-extruded alloys in which nanostructured regions had a grain size of 200 nm and coarse-grained regions had an equivalent size of 1 µm.
Abstract: Cryomilled 5083 Al alloys blended with volume fractions of 15, 30, and 50 pct unmilled 5083 Al were produced by consolidation of a mixture of cryomilled 5083 Al and unmilled 5083 Al powders. A bimodal grain size was achieved in the as-extruded alloys in which nanostructured regions had a grain size of 200 nm and coarse-grained regions had a grain size of 1 µm. Compression loading in the longitudinal direction resulted in elastic-perfectly plastic deformation behavior. An enhanced tensile elongation associated with the occurrence of a Luders band was observed in the bimodal alloys. As the volume fraction of coarse grains was increased, tensile ductility increased and strength decreased. Enhanced tensile ductility was attributed to the occurrence of crack bridging as well as delamination between nanostructured and coarse-grained regions during plastic deformation.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the Young's and shear moduli of the composites with different graphene volume fractions under different temperatures are simulated and discussed, and large discrepancies between the results from the MD simulations and the rule of mixture are observed.
Abstract: This paper investigates the mechanical properties of graphene/PMMA nanocomposite system by using the molecular dynamics simulations. The graphene nanoplates are assumed to be fully exfoliated in the PMMA matrix and are all planar orientated, which are similar to the ones assembled using layer-by-layer technique. The Young's modulus and shear modulus of the composites with different graphene volume fractions under different temperatures are simulated and discussed. The results show that the Young's and shear moduli increase with the increase of graphene volume fraction and decrease as the temperature rises from 300 K to 500 K, while the efficiency of the reinforcement is reduced as the graphene content becomes higher. Simulations of single layer graphene under uniaxial tension, in-plane pure shear and uniformly distributed transverse load are performed and the effective thickness and the elastic moduli of graphene are subsequently determined uniquely. The obtained stiffnesses of graphene are then substituted into the simple rule of mixture to predict the overall mechanical properties of the composite. Large discrepancies between the results from the MD simulations and the rule of mixture are observed.

232 citations

Journal ArticleDOI
TL;DR: A parametric experimental study has been conducted to investigate the effect of polypropylene fiber on the workability and durability of the concrete composite containing fly ash and silica fume as discussed by the authors.
Abstract: A parametric experimental study has been conducted to investigate the effect of polypropylene fiber on the workability and durability of the concrete composite containing fly ash and silica fume. Four different fiber volume fractions (0.06%, 0.08%, 0.1% and 0.12%) were used. The results indicate that the addition of polypropylene fiber has a little adverse effect on the workability of concrete composite containing fly ash and silica fume. With the increase of fiber volume fraction, both of the slump and slump flow are decreasing gradually. However, the addition of polypropylene fiber has greatly improved the durability of the concrete composite containing fly ash and silica fume. The length of water permeability, the dry shrinkage strain and the carbonation depth of concrete containing fly ash and silica fume are decreasing gradually with the increase of fiber volume fraction as the fiber volume fraction is below 0.12%. Besides, freeze–thaw resistance of polypropylene fiber reinforced concrete containing fly ash and silica fume was found to slightly increase when compared to the concrete composite without fibers. Moreover, there is a tendency of increase in the freeze–thaw resistance with the increase of fiber volume fraction as the fiber volume fraction is below 0.08%. However, the freeze–thaw resistance begins to decrease slightly after the fiber volume fraction beyond 0.08%.

231 citations

Journal ArticleDOI
TL;DR: In this article, the effects of 60 MeV 12 C ion irradiation on nanocrystalline gold (nano-Au) were studied and the experimental results showed that the irradiation-produced defects in nano-AU are thermally unstable because of the existence of a large volume fraction of grain boundaries.

231 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
88% related
Coating
379.8K papers, 3.1M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Polymer
131.4K papers, 2.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023965
20222,020
2021744
2020736
2019786
2018696