scispace - formally typeset
Search or ask a question
Topic

Volume fraction

About: Volume fraction is a research topic. Over the lifetime, 16312 publications have been published within this topic receiving 374181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the shear and compressive properties of aggregated alumina particles are determined as functions of volume fraction and the strength of the interparticle attraction, and the links between compressive and shear properties are well described by linear elastic models where the Py and τy are a function of Poisson's ratio which, for the suspensions investigated, has a value near 0.49.
Abstract: The shear and compressive properties of aggregated alumina particles are determined as functions of volume fraction and the strength of the interparticle attraction. Over a range of volume fractions, yield stresses, τy, elastic moduli, the strain delimiting the extent of the linear elastic response, and compressive yield stress, Py, are well described by power-law functions of volume fraction, while the role of interparticle attractions can be accounted for by expressing these mechanical properties as (ϕ/ϕg − 1)n, where ϕg captures the strength of particle attractions and n the microstructure. The links between compressive and shear properties are well described by linear elastic models where the Py and τy are a function of Poisson's ratio which, for the suspensions investigated, has a value near 0.49.

167 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the elasticity and fracture behavior of swollen polymer networks using a simple experimental method to induce cavitation within a gel and adapt scaling theories to capture the observed transition from reversible to irreversible deformations as a function of polymer volume fraction.
Abstract: The mechanical properties of gels present qualitatively contradictory behavior; they are commonly soft but also notoriously brittle. We investigate the elasticity and fracture behavior of swollen polymer networks using a simple experimental method to induce cavitation within a gel and adapt scaling theories to capture the observed transition from reversible to irreversible deformations as a function of polymer volume fraction. It is shown quantitatively that the transition from reversible cavitation to irreversible fracture depends on the polymer volume fraction and an initial defect length scale. The use of cavitation experiments permits characterization of network properties across length scales ranging from µm to mm. We anticipate that these results may significantly enhance the understanding of mechanical properties of soft materials, both synthetic and biological.

167 citations

Journal ArticleDOI
TL;DR: Masoumi et al. as discussed by the authors showed that the thermal conductivity enhancement of the Al2O3 nanofluid based on engine coolant is proportional to the volume fraction of Al 2O3.
Abstract: Various suspensions containing Al2O3 nanoparticles (<50 nm) in a car engine coolant have been prepared using oleic acid as the surfactant and are tested to be stable for more than 80 days. Thermal conductivity and viscosity of the nanofluids have been investigated both as a function of concentration of Al2O3 nanoparticles as well as temperature between 10 and 80 °C. The prepared nanofluid, containing only 0.035 volume fraction of Al2O3 nanoparticles, displays a fairly higher thermal conductivity than the base fluid and a maximum enhancement (knf/kbf) of ~10.41% is observed at room temperature. The thermal conductivity enhancement of the Al2O3 nanofluid based on engine coolant is proportional to the volume fraction of Al2O3. The volume fraction and temperature dependence of the thermal conductivity of the studied nanofluids present excellent correspondence with the model proposed by Prasher et al (2005 Phys. Rev. Lett. 94 025901), which takes into account the role of translational Brownian motion, interparticle potential and convection in fluid arising from Brownian movement of nanoparticles for thermal energy transfer in nanofluids. Viscosity data demonstrate transition from Newtonian characteristics for the base fluid to non-Newtonian behaviour with increasing content of Al2O3 in the base fluid (coolant). The data also show that the viscosity increases with an increase in concentration and decreases with an increase in temperature. An empirical correlation of the type log(μnf) = A exp(−BT) explains the observed temperature dependence of the measured viscosity of Al2O3 nanofluid based on car engine coolant. We further confirm that Al2O3 nanoparticle concentration dependence of the viscosity of nanofluids is very well predicted on the basis of a recently reported theoretical model (Masoumi et al 2009 J. Phys. D: Appl. Phys. 42 055501), which considers Brownian motion of nanoparticles in the nanofluid.

167 citations

Journal ArticleDOI
TL;DR: It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time.
Abstract: In this investigation, nanofluids of carbon nanotubes are prepared and the thermal conductivity and volumetric heat capacity of these fluids are measured using a thin layer technique as a function of time of ultrasonication, temperature, and volume fraction It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time The clustering of carbon nanotubes was also confirmed microscopically The strong dependence of the effective thermal conductivity on temperature and volume fraction of nanofluids was attributed to Brownian motion and the interparticle potential, which influences the particle motion The effect of temperature will become much more evident with an increase in the volume fraction and the agglomeration of the nanoparticles, as observed experimentally The data obtained from this work have been compared with those of other studies and also with mathematical models at present proven for suspensions Using a 25% volumetric concentration of carbon nanotubes resulted in a 20% increase in the thermal conductivity of the base fluid (ethylene glycol)The volumetric heat capacity also showed a pronounced increase with respect to that of the pure base fluid

167 citations

Journal ArticleDOI
TL;DR: In this paper, a lattice Boltzmann method was used to simulate suspensions of deformable particles by coupling the LBM for the fluid phase to a linear finite-element analysis (FEA) describing particle deformation.
Abstract: A novel method is developed to simulate suspensions of deformable particles by coupling the lattice-Boltzmann method (LBM) for the fluid phase to a linear finite-element analysis (FEA) describing particle deformation. The methodology addresses the need for an efficient method to simulate large numbers of three-dimensional and deformable particles at high volume fraction in order to capture suspension rheology, microstructure, and self-diffusion in a variety of applications. The robustness and accuracy of the LBM-FEA method is demonstrated by simulating an inflating thin-walled sphere, a deformable spherical capsule in shear flow, a settling sphere in a confined channel, two approaching spheres, spheres in shear flow, and red blood cell deformation in flow chambers. Additionally, simulations of suspensions of hundreds of biconcave red blood cells at 40 % volume fraction produce continuum-scale physics and accurately predict suspension viscosity and the shear-thinning behaviour of blood. Simulations of fluid-filled spherical capsules which have red-blood-cell membrane properties also display deformation-induced shear-thinning behaviour at 40 % volume fraction, although the suspension viscosity is significantly lower than blood.

166 citations


Network Information
Related Topics (5)
Amorphous solid
117K papers, 2.2M citations
88% related
Coating
379.8K papers, 3.1M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Polymer
131.4K papers, 2.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023965
20222,020
2021744
2020736
2019786
2018696