scispace - formally typeset
Search or ask a question
Topic

Volume of fluid method

About: Volume of fluid method is a research topic. Over the lifetime, 5338 publications have been published within this topic receiving 116760 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new method for sloshing simulation in a sway tank is present, in which the two phase interface is treated as a physical discontinuity, which can be captured by a well-designed high order scheme.
Abstract: A new method for sloshing simulation in a sway tank is present, in which the two phase interface is treated as a physical discontinuity, which can be captured by a well-designed high order scheme. Based on Normalized Variable Diagram (NVD), a high order discretization scheme with unstructured grids is realized, together with a numerical method for free surface flow with a fixed grid. This method is implemented in an in-house code General Transport Equation Analyzer (GTEA) which is an unstructured grids finite volume solver. The present method is first validated by available analytical solutions. A simulation for a 2-D rectangular tank at different excitation frequencies of the sway is carried out. A comparison with experimental data in literature and results obtained by commercial software CFX shows that the sloshing load on the monitor points agrees well with the experimental data, with the same grids, and the present method gives better results on the secondary peak. It is shown that the present method can simulate the free surface overturning and breakup phenomena.

36 citations

Journal ArticleDOI
TL;DR: An algorithm is proposed and developed whereby the interfacial area is ascertained within the framework of the volume-of-fluid (VOF) multiphase model whereby a plane cutting an orthogonal mesh cell is considered and the area can be approximated as the area of the resulting polygon from the plane cut.

36 citations

Journal ArticleDOI
TL;DR: In this article, a volume of fluid (VOF) method is applied to study the deformation and breakup of a single liquid drop in shear flows superimposed on uniform flow.

36 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that at short times the flow solidifies completely only near the point of release where the flow is thinnest and at later times complete solidification also occurs near the nose of the flow where the cooling rates are greatest.
Abstract: The solidification of hot fluid flowing in a thin buoyancy-driven layer between cold solid boundaries is analysed in a series of two papers. As an approximation to flow in a crack in a weakly elastic solid or to free-surface flow beneath a thin solidified crust, the boundaries are considered to be flexible and to exert negligible resistance to lateral deformation. The resultant equations of continuity and motion reduce to a kinematic-wave equation with a loss term corresponding to the accumulation of solidified material at the boundaries. The Stefan problem for the solidification is coupled back to the flow through the advection of heat by the fluid, which competes with lateral heat loss by conduction to the solid. Heat and mass conservation are used to derive boundary conditions at the propagating nose of the flow. In this paper the two-dimensional flow produced by a line release of a given volume of fluid is investigated. It is shown that at short times the flow solidifies completely only near the point of release where the flow is thinnest, at later times complete solidification also occurs near the nose of the flow where the cooling rates are greatest and, eventually, the flow is completely solidified along its depth. Some transient melting of the boundaries can also occur if the fluid is initially above its solidification temperature. The dimensionless equations are parameterized only in terms of a Stefan number S and a dimensionless solidification temperature Θ. Asymptotic solutions for the flow at short times and near the source are derived by perturbation series and similarity arguments. The general evolution of the flow is calculated numerically, and the scaled time to final solidification, the length and the thickness of the solidified product are determined as functions of S and Θ. The theoretical solutions provide simple models of the release of a pulse of magma into a fissure in the Earth's lithosphere or of lava flow on the flanks of a volcano after a brief eruption. Other geological events are better modelled as flows fed by a continual supply of hot fluid. The solidification of such flows will be investigated in Part 2.

35 citations

Journal ArticleDOI
TL;DR: In this article, all the results obtained by Ansari et al. have been tested, using different densities for the phase set at the top of the container, and three different codes were used as reference: one multimodal single phase code for those cases where the upper fluid was much less dense that the bottom one and two different Navier-Stokes/VOF codes for all cases.

35 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
90% related
Laminar flow
56K papers, 1.2M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
86% related
Turbulence
112.1K papers, 2.7M citations
86% related
Boundary layer
64.9K papers, 1.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023315
2022655
2021352
2020345
2019341
2018323