scispace - formally typeset
Search or ask a question
Topic

von Mises yield criterion

About: von Mises yield criterion is a research topic. Over the lifetime, 4374 publications have been published within this topic receiving 82642 citations. The topic is also known as: Von Mises stress.


Papers
More filters
Proceedings ArticleDOI
TL;DR: Wang et al. as discussed by the authors developed a multiaxial yield theory for isotropic hardening materials, based on an average shear stress criterion (ASSC), which can well correlate the stress-strain relations for both initial yield and subsequent yield states.
Abstract: It is known that the Tresca yield theory predicts a lower bound of burst pressure, whereas the von Mises yield theory provides an upper bound of burst pressure of pipelines. To accurately predict the burst pressure, the present authors [1] recently developed a new multiaxial yield theory for isotropic hardening materials, based on an average shear stress criterion (ASSC). Extensive classic experiments showed that the ASSC criterion can well correlate the stress-strain relations for both initial yield and subsequent yield states. Based on the ASSC yield theory, a new theoretical solution of the burst pressure of pipelines at plastic collapse is developed as a function of pipe geometry, material hardening exponent, and ultimate tensile strength. This solution is then validated by experimental data for various pipeline steels. The ASSC yield theory is further applied to accurately determine actual burst pressure using available finite element software like ABAQUS, which currently adopts the von Mises yield criterion and the associate flow rule for isotropic elastic-plastic analysis. Four burst failure criteria: the Mises equivalent stress criterion, the maximum principal stress criterion, the Mises equivalent strain criterion and the maximum tensile strain criterion are developed as functions of the ultimate tensile stress and the strain hardening exponent. Application demonstrates that the proposed failure criteria in conjunction with ABAQUS numerical analysis can accurately determine burst pressure of pipelines.Copyright © 2006 by ASME

68 citations

Journal ArticleDOI
TL;DR: In this article, an experimental measurement of the plastic biaxial mechanical response for an aluminum alloy (AA5754-O) sheet metal is presented, and results show repeatable behavior (within quantified uncertainties) for U to 20%, PS to almost 15%, and BB to above 20% in-plane strains.

68 citations

Journal ArticleDOI
TL;DR: In this article, the in-plane shear strength of steel-plate composite (SC) walls is analyzed by using a mechanics-based model (MBM) to present the fundamental in-planar shear force-shear strain (V − γ) response of SC walls.

68 citations

Journal ArticleDOI
TL;DR: This work incorporates a failure description in the hyperelastic models of soft anisotropic materials by introducing energy limiters in the strain energy functions and finds that the local failure criterion in the form of the critical strain energy is the most robust among the considered ones.
Abstract: The arterial wall is a composite where the preferred orientation of collagen fibers induces anisotropy. Though the hyperelastic theories of fiber-reinforced composites reached a high level of sophistication and showed a reasonable correspondence with the available experimental data they are short of the failure description. Following the tradition of strength of materials the failure criteria are usually separated from stress analysis. In the present work we incorporate a failure description in the hyperelastic models of soft anisotropic materials by introducing energy limiters in the strain energy functions. The limiters provide the saturation value for the strain energy which indicates the maximum energy that can be stored and dissipated by an infinitesimal material volume. By using some popular constitutive models enhanced with the energy limiters we analyze rupture of a sheet of arterial material under the plane stress state varying from the uniaxial to equal biaxial tension. We calculate the local failure criteria including the maximum principal stress, the maximum principal stretch, the von Mises stress, and the strain energy at the moment of the sheet rupture. We find that the local failure criterion in the form of the critical strain energy is the most robust among the considered ones. We also find that the tensile strength-the maximum principal stress-that is usually obtained in uniaxial tension tests might not be appropriate as a failure indicator in the cases of the developed biaxiality of the stress-strain state.

67 citations

Journal ArticleDOI
TL;DR: In this article, a lifetime prediction software for multiaxial state of cyclic stress was developed based on the local elastic stresses, which is an acceptable method for high-cycle fatigue.
Abstract: In reality most welded components are loaded with a combination of different variable forces and moments that often cause a state of multiaxial stress in the fatigue-critical areas. If the multiaxial loading is non-proportional, traditional deformation-based hypotheses are not able to give a reliable lifetime prediction. This investigation is a cooperation between three German research institutes to build an experimental database for the verification of different concepts of lifetime prediction. In accordance with former investigations, a flange-tube connection made of steel P460 was used. The test program was divided into constant amplitude and variable amplitude tests. The ratio between the nominal bending and shear stress is 1. For the variable amplitude tests, a Gaussian-standard is used. A lifetime prediction software for multiaxial state of cyclic stress was developed. The software has a modular structure and allows calculations with different hypotheses and methods. The calculations are based on the local elastic stresses. This is an acceptable method for high-cycle fatigue. In this work, two general types of calculation, the Integral Approach and Critical Plane Approach and a local stress-based modification of the von Mises Criterion, the hypothesis of effective equivalent stress (EESH) are shown. The damage accumulation is performed with the elementary Miner’s rule (S–N curve without fatigue limit). The statistical distributions of the damage sums are also shown.

67 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Composite number
103.4K papers, 1.2M citations
79% related
Fracture mechanics
58.3K papers, 1.3M citations
78% related
Numerical analysis
52.2K papers, 1.2M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023319
2022722
2021216
2020226
2019173
2018162