scispace - formally typeset
Search or ask a question

Showing papers on "Vortex published in 2010"


Journal ArticleDOI
16 Sep 2010-Nature
TL;DR: This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope, and it is demonstrated how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties.
Abstract: It has been possible to produce photon vortex beams — optical beams with spiralling wavefronts — for some time, and they have found widespread application as optical tweezers, in interferometry and in information transfer, for example. The production of vortex beams of electrons was demonstrated earlier this year ( http://go.nature.com/4H2xWR ) in a procedure involving the passage of electrons through a spiral stack of graphite thin films. The ability to generate such beams reproducibly in a conventional electron microscope would enable many new applications. Now Jo Verbeeck and colleagues have taken a step towards that goal. They describe a versatile holographic technique for generating these twisted electron beams, and demonstrate their potential use as probes of a material's magnetic properties. It was demonstrated recently that passing electrons through a spiral stack of graphite thin films generates an electron beam with orbital angular momentum — analogous to the spiralling wavefronts that can be introduced in photon beams and which have found widespread application. Here, a versatile holographic technique for generating these twisted electron beams is described. Moreover, a demonstration is provided of their potential use in probing a material's magnetic properties. Vortex beams (also known as beams with a phase singularity) consist of spiralling wavefronts that give rise to angular momentum around the propagation direction. Vortex photon beams are widely used in applications such as optical tweezers to manipulate micrometre-sized particles and in micro-motors to provide angular momentum1,2, improving channel capacity in optical3 and radio-wave4 information transfer, astrophysics5 and so on6. Very recently, an experimental realization of vortex beams formed of electrons was demonstrated7. Here we describe the creation of vortex electron beams, making use of a versatile holographic reconstruction technique in a transmission electron microscope. This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope. We demonstrate how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties. Our results show that electron vortex beams hold promise for new applications, in particular for analysing and manipulating nanomaterials, and can be easily produced.

710 citations


Journal ArticleDOI
TL;DR: By controlling the flow velocity, this work determines the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results.
Abstract: We report experimental observations and numerical simulations of the formation, dynamics, and lifetimes of single and multiply charged quantized vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We nucleate pairs of vortices of opposite charge (vortex dipoles) by forcing superfluid flow around a repulsive Gaussian obstacle within the BEC. By controlling the flow velocity we determine the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results. We present measurements of vortex dipole dynamics, finding that the vortex cores of opposite charge can exist for many seconds and that annihilation is inhibited in our trap geometry. For sufficiently rapid flow velocities, clusters of like-charge vortices aggregate into long-lived multiply charged dipolar flow structures.

338 citations


Journal ArticleDOI
TL;DR: It is shown that the polarization sensitivity of the plasmonic vortex lens can be utilized for the dynamic switching of the surface Plasmon vortices with different topological charges.
Abstract: The generation of surface plasmon vortices with arbitrary higher order vortex topological charges with novel plasmonic vortex lens is experimentally demonstrated. It is shown that the polarization sensitivity of the plasmonic vortex lens can be utilized for the dynamic switching of the surface plasmon vortices with different topological charges. A simple algebraic rule related to the vortex topological charge change in the dynamic switching is formulated, and its proof is provided with theory and experiment. The synthesis and dynamic switching of higher order surface plasmon vortices have profound potential in optical trapping, optical data storage, and other related fields.

316 citations


Journal ArticleDOI
TL;DR: In this paper, the wake of a wind turbine operating in a uniform inflow at various tip speed ratios is simulated using a numerical method, which combines large eddy simulations with an actuator line technique.
Abstract: The wake of a wind turbine operating in a uniform inflow at various tip speed ratios is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. The computations are carried out in a numerical mesh with about 8.4·106 grid points distributed to facilitate detailed studies of basic features of both the near and far wake, including distributions of interference factors, vortex structures and formation of instabilities. Copyright © 2009 John Wiley & Sons, Ltd.

262 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the wake-induced vibrations of a pair of cylinders in a tandem arrangement and found that a favorable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations.
Abstract: The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex–structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.

258 citations


Journal ArticleDOI
Daniel Freilich1, D. M. Bianchi1, Adam Kaufman1, T. K. Langin1, David Hall1 
03 Sep 2010-Science
TL;DR: The real-time dynamics of quantized vortices in trapped dilute-gas Bose-Einstein condensates are observed by repeatedly imaging the vortex cores and the precession frequency of a single vortex is measured by explicitly observing its time dependence and is found to be in good agreement with theory.
Abstract: Understanding the behavior of quantized vortices is essential to gaining insight into diverse superfluid phenomena, from critical-current densities in superconductors to quantum turbulence in superfluids. We observe the real-time dynamics of quantized vortices in trapped dilute-gas Bose-Einstein condensates by repeatedly imaging the vortex cores. The precession frequency of a single vortex is measured by explicitly observing its time dependence and is found to be in good agreement with theory. We further characterize the dynamics of vortex dipoles in two distinct configurations: (i) an asymmetric configuration, in which the vortex trajectories are dynamic and nontrivial, and (ii) a stable, symmetric configuration, in which the dipole is stationary.

240 citations


Journal ArticleDOI
TL;DR: In this article, a vortex-force formalism for the interaction of surface gravity waves and currents is implemented in a three-dimensional (3D), terrain-following, hydrostatic, oceanic circulation model (Regional Oceanic Modeling System: ROMS; Shchepetkin and McWilliams, 2005 ).

231 citations


Journal ArticleDOI
TL;DR: In this paper, a short-length piezoelectric beam is placed in the wake of a circular cylinder at high Reynolds numbers to evaluate their performance as energy generators, where the coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage.
Abstract: Short-length piezoelectric beams were placed in the wake of a circular cylinder at high Reynolds numbers to evaluate their performance as energy generators. The coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage. There are two mechanisms that contribute to the driving forcing of the beam. The first mechanism is the impingement of induced flow by the passing vortices on one side of the beam, and the second is the low pressure core region of the vortices which is present at the opposite side of the beam. The sequence of these two mechanisms combined with the resonating conditions of the beam generated maximum energy output which was also found to vary with the location in the wake. The maximum power output was measured when the tip of the beam is about two diameters downstream of the cylinder. This power drops off the center line of the wake and decays with downstream distance as (x/D)−3/2.

230 citations


Journal ArticleDOI
TL;DR: In this article, the response surface methodology has been performed based on the Muschelknautz method of modeling (MM) to optimize the cyclone geometrical ratios to achieve minimum pressure drop.

219 citations


Journal ArticleDOI
TL;DR: In this article, the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number was investigated using a turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales.
Abstract: Particle image velocimetry experiments were performed to study the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number. This roughness was replicated from an actual turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales. The spatial structure of flow over this rough surface near the outer edge of the roughness sublayer is contrasted with that of smooth-wall flow to identify any structural modifications due to roughness. Hairpin vortex packets are observed in the outer layer of the rough-wall flow and are found to contribute heavily to the Reynolds shear stress, consistent with smooth-wall flow. While similar qualitative consistency is observed in comparisons of smooth- and rough-wall two-point correlations, some quantitative differences are also apparent. In particular, a reduction in the streamwise extent of two-point correlations of streamwise velocity is noted which could be indicative of a roughness-induced modification of outer-layer vortex organization. Proper orthogonal decomposition analysis reveals the streamwise coherence of the larger scales to be most sensitive to roughness while the spatial characteristics of the smaller scales appear relatively insensitive to such effects.

188 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the lower branch of Couette flow is a finite Reynolds number analogue of a Rayleigh vortex-wave interaction with scales appropriately modified from those for external flows to Couette flows.
Abstract: The relationship between asymptotic descriptions of vortex–wave interactions and more recent work on ‘exact coherent structures’ is investigated. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of papers. In this paper, it is shown that the so-called ‘lower branch’ state which has been shown to play a crucial role in these self-sustained processes is a finite Reynolds number analogue of a Rayleigh vortex–wave interaction with scales appropriately modified from those for external flows to Couette flow, the flow of interest here. Remarkable agreement between the asymptotic theory and numerical solutions of the Navier–Stokes equations is found even down to relatively small Reynolds numbers, thereby suggesting the possible importance of vortex–wave interaction theory in turbulent shear flows. The relevance of the work to more general shear flows is also discussed.

Journal ArticleDOI
TL;DR: In this paper, the Abrikosov flux lattice solution is derived using an expansion in a parameter characterizing the ''distance'' to the superconductor-normal phase transition line.
Abstract: Thermodynamics of type II superconductors in electromagnetic field based on the Ginzburg-Landau theory is presented. The Abrikosov flux lattice solution is derived using an expansion in a parameter characterizing the ``distance'' to the superconductor-normal phase transition line. The expansion allows a systematic improvement of the solution. The phase diagram of the vortex matter in magnetic field is determined in detail. In the presence of significant thermal fluctuations on the mesoscopic scale (for example, in high ${T}_{c}$ materials) the vortex crystal melts into a vortex liquid. A quantitative theory of thermal fluctuations using the lowest Landau level approximation is given. It allows one to determine the melting line and discontinuities at melt, as well as important characteristics of the vortex liquid state. In the presence of quenched disorder (pinning) the vortex matter acquires certain ``glassy'' properties. The irreversibility line and static properties of the vortex glass state are studied using the ``replica'' method. Most of the analytical methods are introduced and presented in some detail. Various quantitative and qualitative features are compared to experiments in type II superconductors, although the use of a rather universal Ginzburg-Landau theory is not restricted to superconductivity and can be applied with certain adjustments to other physical systems, for example, rotating Bose-Einstein condensate.

Journal ArticleDOI
TL;DR: In this paper, an evaluation of computational models for flight dynamics simulations on low-speed aircraft with very-flexible high-aspect ratio wings is carried out for flight simulation.
Abstract: An evaluation of computational models is carried out for flight dynamics simulations on low-speed aircraft with very-flexible high-aspect ratio wings. Structural dynamic models include displacement-based, strain-based, and intrinsic (first-order) geometrically-nonlinear composite beams, while thin-strip and vortex lattice methods are considered for the unsteady aerodynamics. It is first shown that all different beam finite element models (previously derived in the literature from different assumptions) can be consistently obtained from a single set of equations. This approach has been used to expand existing strain-based models to include shear effects. Comparisons are made in terms of numerical efficiency and simplicity of integration in flexible aircraft flight dynamics studies. On the structural modeling, it was found that intrinsic solutions can be several times faster than conventional ones for aircraft-type geometries. For the aerodynamic modeling, thin-strip models based on indicial airfoil response are found to perform well in situations dominated by small amplitude dynamics around large quasi-static wing deflections, while large-amplitude wing dynamics require three-dimensional descriptions (e.g. vortex lattice).

Journal ArticleDOI
TL;DR: In this article, a subcritical baroclinic instability (SBI) was observed in local shearing boxes, using either the incompressible Boussinesq approximation or a fully compressible model.
Abstract: Context. The presence of vortices in accretion discs has been debated for more than a decade. Baroclinic instabilities might be a way to generate these vortices in the presence of a radial entropy gradient. However, the nature of these instabilities is still unclear and 3D parametric instabilities can lead to the rapid destruction of these vortices.Aims. We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Methods. We investigate the SBI in local shearing boxes, using either the incompressible Boussinesq approximation or a fully compressible model. We explore the parameter space varying several local dimensionless parameters and we isolate the regime relevant for the SBI. 3D shearing boxes are also investigated using high resolution spectral methods to resolve both the SBI and 3D parametric instabilities.Results. A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoiland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically α 3 × 10-3 , the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities. Conclusions. The subcritical baroclinic instability is a robust phenomenon, which can be captured using local simulations. The instability survives in 3D thanks to a balance between the 2D SBI and 3D parametric instabilities. Finally, this instability can lead to a weak outward transport of angular momentum, due to the generation of density waves by the vortices.

Journal ArticleDOI
TL;DR: The excellent freestream and vortex preservation properties of WCNS when used with the numerical technique, compared with those of WENO, are shown for the first time.

Journal ArticleDOI
TL;DR: In this paper, the vector vortex coronagraph was used to detect a brown dwarf companion 3000 times fainter than its host star (HR 7672) in the K_s band (centered at 2.15 μm), at an angular separation of 2.5λ/d.
Abstract: High-contrast coronagraphy will be needed to image and characterize faint extrasolar planetary systems. Coronagraphy is a rapidly evolving field, and many enhanced alternatives to the classical Lyot coronagraph have been proposed in the past 10 years. Here, we discuss the operation of the vector vortex coronagraph, which is one of the most efficient possible coronagraphs. We first present recent laboratory results and then first light observations at the Palomar observatory. Our near-infrared H-band (centered at ~1.65 μm) and K-band (centered at ~2.2 μm) vector vortex devices demonstrated excellent contrast results in the lab, down to ~10^(–6) at an angular separation of ~3λ/d. On sky, we detected a brown dwarf companion 3000 times fainter than its host star (HR 7672) in the K_s band (centered at ~2.15 μm), at an angular separation of ~2.5λ/d. Current and next-generation high-contrast instruments can directly benefit from the demonstrated capabilities of such a vector vortex: simplicity, small inner working angle, high optical throughput (>90%), and maximal off-axis discovery space.

Journal ArticleDOI
TL;DR: Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures and the background ions located ahead of the electric field are accelerated to high energies.
Abstract: Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.

Journal ArticleDOI
TL;DR: In this article, it was shown that the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2.
Abstract: We report that the (Ba,K)Fe2As2 crystal with Tc =3 2 K shows a pinning potential, U0, as high as 104 K, with U0 showing very little field dependence. The (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The isotropic rigid vortices observed in the two-dimensional (2D) (Ba,K)Fe2As2 distinguish this compound from 2D high-Tc cuprate superconductors with 2D vortices. The vortex avalanches were also observed at low temperatures in the (Ba,K)Fe2As2 crystal. It is proposed that it is the K substitution that induces both almost isotropic superconductivity and the very strong intrinsic pinning in the (Ba,K)Fe2As2 crystal.

Book
03 Dec 2010
TL;DR: In this paper, the authors present a group-theoretic classification of the Equations of Motion of a homogeneous or inhomogeneous Inviscid Fluid in the presence of Planar and Rotational Symmetry.
Abstract: Foreword. Preface. 1. Group-Theoretic Classification of the Equations of Motion of a Homogeneous or Inhomogeneous Inviscid Fluid in the Presence of Planar and Rotational Symmetry. 2. Exact Solutions to the Nonstationary Euler Equations in the Presence of Planar and Rotational Symmetry. 3. Nonlinear Diffusion Equations and Invariant Manifolds. 4. The Method of Defining Equations. 5. Stationary Vortex Structures in an Ideal Fluid. 6. Group-Theoretic Properties of the Equations of Motion for a Viscous Heat Conducting Liquid. 7. Exact Solutions to the Equations of Dynamics for a Viscous Liquid. Bibliography. Subject Index.

Journal ArticleDOI
TL;DR: In this article, an experimental study is performed on the vortex induced vibrations of a rigid flexibly mounted circular cylinder placed in a crossflow. The cylinder is allowed to oscillate in combined cross-flow and in-line motions, and the ratio of the nominal inline and transverse natural frequencies is varied systematically.
Abstract: An experimental study is performed on the vortex induced vibrations of a rigid flexibly mounted circular cylinder placed in a crossflow. The cylinder is allowed to oscillate in combined crossflow and in-line motions, and the ratio of the nominal in-line and transverse natural frequencies is varied systematically. Experiments were conducted on a smooth cylinder at subcritical Reynolds numbers between 15 000 and 60 000 and on a roughened cylinder at supercritical Reynolds numbers between 320 000 and 710 000, with a surface roughness equal to 0.23 % of the cylinder diameter. Strong qualitative and quantitative similarities between the subcritical and supercritical experiments are found, especially when the in-line natural frequency is close to twice the value of the crossflow natural frequency. In both Reynolds number regimes, the test cylinder may exhibit a 'dual-resonant' response, resulting in resonant crossflow motion at a frequency f υ , near the Strouhal frequency, and resonant in-line motion at 2 f υ . This dual resonance is shown to occur over a relatively wide frequency region around the Strouhal frequency, accompanied by stable, highly repeatable figure-eight cylinder orbits, as well as large third-harmonic components of the lift force. Under dual-resonance conditions, both the subcritical and the supercritical response is shown to collapse into a narrow parametric region in which the effective natural-frequency ratio is near the value 2, regardless of the nominal natural-frequency ratio. Some differences are noted in the magnitudes of forces and the cylinder response between the two different Reynolds number regimes, but the dual-resonant response and the resulting force trends are preserved despite the large Reynolds number difference.

Journal ArticleDOI
TL;DR: In this article, large-scale hairpin structures in the instantaneous velocity fields are observed to be aligned in the streamwise direction and spanwise organized along diagonal lines, consistent with Tomkins & Adrian (J. Fluid Mech., vol. 490, 2003, p. 37).
Abstract: Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/? = 0.15 and 0.89. The Reynolds number based on momentum thickness Re? = 34000. The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low-speed fluid, consistent with Tomkins & Adrian (J. Fluid Mech., vol. 490, 2003, p. 37). The observed hairpin structure is also a statistically relevant structure as is shown by the conditional average flow field associated to spanwise swirling motion. Spatial low-pass filtering of the velocity field reveals streamwise vortices and signatures of large-scale hairpins (height > 0.5?), which are weaker than the smaller scale hairpins in the unfiltered velocity field. The large-scale hairpin structures in the instantaneous velocity fields are observed to be aligned in the streamwise direction and spanwise organized along diagonal lines. Additionally the autocorrelation function of the wall-normal swirling motion representing the large-scale hairpin structure returns positive correlation peaks in the streamwise direction (at 1.5? distance from the DC peak) and along the 45° diagonals, which also suggest a periodic arrangement in those directions. This is evidence for the existence of a spanwise–streamwise organization of the coherent structures in a fully turbulent boundary layer.

Journal ArticleDOI
TL;DR: In this paper, the effect of the Reynolds number (Re) on the dynamics and vortex formation modes of spheres rising or falling freely through a fluid (where Re = 100-15000).
Abstract: In this paper, we study the effect of the Reynolds number (Re) on the dynamics and vortex formation modes of spheres rising or falling freely through a fluid (where Re = 100–15000). Since the oscillation of freely falling spheres was first reported by Newton (University of California Press, 3rd edn, 1726, translated in 1999), the fundamental question of whether a sphere will vibrate, as it rises or falls, has been the subject of a number of investigations, and it is clear that the mass ratio m* (defined as the relative density of the sphere compared to the fluid) is an important parameter to define when vibration occurs. Although all rising spheres (m* 1) always move without vibration. However, in contrast with previous studies, we discover that a whole regime of buoyant spheres rise through a fluid without vibration. It is only when one passes below a critical value of the mass ratio, that the sphere suddenly begins to vibrate periodically and vigorously in a zigzag trajectory within a vertical plane. The critical mass is nearly constant over two ranges of Reynolds number (m*crit ≈ 0.4 for Re = 260–1550 and m*crit ≈ 0.6 for Re > 1550). We do not observe helical or spiral trajectories, or indeed chaotic types of trajectory, unless the experiments are conducted in disturbed background fluid. The wakes for spheres moving rectilinearly are comparable with wakes of non-vibrating spheres. We find that these wakes comprise single-sided and double-sided periodic sequences of vortex rings, which we define as the ‘R’ and ‘2R’ modes. However, in the zigzag regime, we discover a new ‘4R’ mode, in which four vortex rings are created per cycle of oscillation. We find a number of changes to occur at a Reynolds number of 1550, and we suggest the possibility of a resonance between the shear layer instability and the vortex shedding (loop) instability. From this study, ensuring minimal background disturbances, we have been able to present a new regime map of dynamics and vortex wake modes as a function of the mass ratio and Reynolds number {m*, Re}, as well as a reasonable collapse of the drag measurements, as a function of Re, onto principally two curves, one for the vibrating regime and one for the rectilinear trajectories.

Journal ArticleDOI
TL;DR: In this article, a numerical study on the stability properties of wind turbine rotors was performed to obtain a better understanding of the stability of the wakes generated by wind turbine rotor rotors.
Abstract: The aim of the present project is to obtain a better understanding of thestability properties of wakes generated by wind turbine rotors. To accomplishthis a numerical study on the stability of the ...

Journal ArticleDOI
TL;DR: In this paper, the authors performed direct numerical simulations of turbulent flows in a square duct considering a range of Reynolds numbers spanning from a marginal state up to fully developed turbulent states at low Reynolds numbers and found that high velocity streaks are preferentially located in the corner region (e.g. less than 50 wall units apart from a sidewall), flanked by low velocity ones.
Abstract: We have performed direct numerical simulations of turbulent flows in a square duct considering a range of Reynolds numbers spanning from a marginal state up to fully developed turbulent states at low Reynolds numbers. The main motivation stems from the relatively poor knowledge about the basic physical mechanisms that are responsible for one of the most outstanding features of this class of turbulent flows: Prandtl's secondary motion of the second kind. In particular, the focus is upon the role of flow structures in its generation and characterization when increasing the Reynolds number. We present a two-fold scenario. On the one hand, buffer layer structures determine the distribution of mean streamwise vorticity. On the other hand, the shape and the quantitative character of the mean secondary flow, defined through the mean cross-stream function, are influenced by motions taking place at larger scales. It is shown that high velocity streaks are preferentially located in the corner region (e.g. less than 50 wall units apart from a sidewall), flanked by low velocity ones. These locations are determined by the positioning of quasi-streamwise vortices with a preferential sign of rotation in agreement with the above described velocity streaks' positions. This preferential arrangement of the classical buffer layer structures determines the pattern of the mean streamwise vorticity that approaches the corners with increasing Reynolds number. On the other hand, the centre of the mean secondary flow, defined as the position of the extrema of the mean cross-stream function (computed using the mean streamwise vorticity), remains at a constant location departing from the mean streamwise vorticity field for larger Reynolds numbers, i.e. it scales in outer units. This paper also presents a detailed validation of the numerical technique including a comparison of the numerical results with data obtained from a companion experiment.

Journal ArticleDOI
TL;DR: In this paper, the synthetic-jet vortex pairs induced near the exit convect downstream and interact with the vorticity shear layers behind both sides of the cylinder, resulting in the formation of new induced wake vortices.
Abstract: The flow over a circular cylinder controlled by a two-dimensional synthetic jet positioned at the mean rear stagnation point has been experimentally investigated in a water channel at the cylinder Reynolds number Re = 950. This is an innovative arrangement and the particle-image-velocimetry measurement indicates that it can lead to a novel and interesting phenomenon. The synthetic-jet vortex pairs induced near the exit convect downstream and interact with the vorticity shear layers behind both sides of the cylinder, resulting in the formation of new induced wake vortices. The present vortex synchronization occurs when the excitation frequency of the synthetic jet is between 1.67 and 5.00 times the natural shedding frequency at the dimensionless stroke length 99.5. However, it is suggested that the strength of the synthetic-jet vortex pair plays a more essential role in the occurrence of vortex synchronization than the excitation frequency. In addition, the wake-vortex shedding is converted into a symmetric mode from its original antisymmetric mode. The symmetric shedding mode weakens the interaction between the upper and lower wake vortices, resulting in a decrease in the turbulent kinetic energy produced by them. It also has a significant influence on the global flow field, including the velocity fluctuations, Reynolds stresses and flow topology. However, their distributions are still dominated by the large-scale coherent structures.

Journal ArticleDOI
TL;DR: In this article, the influence of the nose shape and yaw angles on the flow structures and the train aerodynamics is investigated. But the authors focus on the effect of the shape of a nose on the aerodynamic properties of a train.

Journal ArticleDOI
TL;DR: In this paper, the authors compute the optimal response of the turbulent Couette mean flow to initial conditions, harmonic and stochastic forcing at Re = 750, including the associated eddy viscosity.
Abstract: We compute the optimal response of the turbulent Couette mean flow to initial conditions, harmonic and stochastic forcing at Re = 750. The equations for the coherent perturbations are linearized near the turbulent mean flow and include the associated eddy viscosity. The mean flow is found to be linearly stable but it has the potential to amplify steamwise streaks from streamwise vortices. The most amplified structures are streamwise uniform and the largest amplifications of the energy of initial conditions and of the variance of stochastic forcing are realized by large-scale streaks having spanwise wavelengths of 4.4h and 5.2h respectively. These spanwise scales compare well with the ones of the coherent large-scale streaks observed in experimental realizations and direct numerical simulations of the turbulent Couette flow. The optimal response to the harmonic forcing, related to the sensitivity to boundary conditions and artificial forcing, can be very large and is obtained with steady forcing of structures with larger spanwise wavelength (7.7h). The optimal large-scale streaks are furthermore found proportional to the mean turbulent profile in the viscous sublayer and up to the buffer layer.

Journal ArticleDOI
TL;DR: In this article, the authors characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams, and images obtained with the 1 m balloon-borne SUNRISE telescope.
Abstract: We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams, and images obtained with the 1 m balloon-borne SUNRISE telescope. By visual inspection of time series, we find some 3.1 ? 10?3 vortices Mm?2 minute?1, which is a factor of ~1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9?minutes, with a standard deviation of 3.2?minutes. In addition, we find several events appearing at the same locations along the duration of the time series (31.6?minutes). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are 6 ? 10?3 s?1, which corresponds to a period of rotation of some 35?minutes. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation.

Journal ArticleDOI
TL;DR: In this paper, a vortex core gyrotropic rotation was split into two distinct frequencies depending on the sign of the vortex core polarity inside the dot, and a magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allowed for local and deterministic addressing of binary information.
Abstract: Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity $p=\pm1$ inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity).

Journal ArticleDOI
TL;DR: In this paper, a vortex core gyrotropic rotation was split into two distinct frequencies depending on the sign of the vortex core polarity inside the dot, and a magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allowed for local and deterministic addressing of binary information.
Abstract: Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity $p=\pm1$ inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity).