scispace - formally typeset
Search or ask a question

Showing papers on "Vortex published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization and phase vortex generation and (de)multiplexing are introduced.
Abstract: An optical vortex having an isolated point singularity is associated with the spatial structure of light waves. A polarization vortex (vector beam) with a polarization singularity has spatially variant polarizations. A phase vortex with phase singularity or screw dislocation has a spiral phase front. The optical vortex has recently gained increasing interest in optical trapping, optical tweezers, laser machining, microscopy, quantum information processing, and optical communications. In this paper, we review recent advances in optical communications using optical vortices. First, basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization/phase vortex generation and (de)multiplexing are introduced. Second, free-space and fiber optical communications using optical vortex modulation and optical vortex multiplexing are presented. Finally, key challenges and perspectives of optical communications using optical vortices are discussed. It is expected that optical vortices exploiting the space physical dimension of light waves might find more interesting applications in optical communications and interconnects.

523 citations


Journal ArticleDOI
TL;DR: A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes for circularly polarized light in a compact device.
Abstract: A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices.

384 citations


Journal ArticleDOI
TL;DR: The acoustic version of valley states in sonic crystals are studied and a vortex nature of such states is revealed and the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly.
Abstract: Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

327 citations


Journal ArticleDOI
TL;DR: In this paper, a new vortex identification criterion called W -method is proposed based on the ideas that vorticity overtakes deformation in vortex and W = 0.52 is a quantity to approximately define the vortex boundary.
Abstract: A new vortex identification criterion called W -method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q -criterion and l 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of W is clear while the interpretations of iso-surface values of Q and l 2 chosen to visualize vortices are obscure; (3) being different from Q and l 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, W is pretty universal and does not need much adjustment in different cases and the iso-surfaces of W =0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and l 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) W =0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate W , the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

305 citations


Journal ArticleDOI
TL;DR: In this article, the initial positions of deforming fluid elements coincide with tubular level surfaces of the Lagrangian-averaged vorticity deviation (LAVD), the trajectory integral of the normed difference of the vortivities from its spatial mean.
Abstract: Rotationally coherent Lagrangian vortices are formed by tubes of deforming fluid elements that complete equal bulk material rotation relative to the mean rotation of the deforming fluid volume. We show that the initial positions of such tubes coincide with tubular level surfaces of the Lagrangian-averaged vorticity deviation (LAVD), the trajectory integral of the normed difference of the vorticity from its spatial mean. The LAVD-based vortices are objective, i.e. remain unchanged under time-dependent rotations and translations of the coordinate frame. In the limit of vanishing Rossby numbers in geostrophic flows, cyclonic LAVD vortex centres are precisely the observed attractors for light particles. A similar result holds for heavy particles in anticyclonic LAVD vortices. We also establish a relationship between rotationally coherent Lagrangian vortices and their instantaneous Eulerian counterparts. The latter are formed by tubular surfaces of equal material rotation rate, objectively measured by the instantaneous vorticity deviation (IVD). We illustrate the use of the LAVD and the IVD to detect rotationally coherent Lagrangian and Eulerian vortices objectively in several two- and three-dimensional flows.

263 citations


Journal ArticleDOI
TL;DR: The theoretical and the experimental results regarding the radiation transmitted through the diffractive optical element show that increasing the order of the phase singularity leads to more efficient conversation of the polarization from radial to azimuthal.
Abstract: Currently, cylindrical beams with radial or azimuthal polarization are being used successfully for the optical manipulation of micro- and nano-particles as well as in microscopy, lithography, nonlinear optics, materials processing, and telecommunication applications. The creation of these laser beams is carried out using segmented polarizing plates, subwavelength gratings, interference, or light modulators. Here, we demonstrate the conversion of cylindrically polarized laser beams from a radial to an azimuthal polarization, or vice versa, by introducing a higher-order vortex phase singularity. To simultaneously generate several vortex phase singularities of different orders, we utilized a multi-order diffractive optical element. Both the theoretical and the experimental results regarding the radiation transmitted through the diffractive optical element show that increasing the order of the phase singularity leads to more efficient conversation of the polarization from radial to azimuthal. This demonstrates a close connection between the polarization and phase states of electromagnetic beams, which has important implications in many optical experiments.

249 citations


Journal ArticleDOI
Shixing Yu1, Long Li1, Guangming Shi1, Cheng Zhu1, Yan Shi1 
TL;DR: In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain.
Abstract: In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

237 citations


Journal ArticleDOI
TL;DR: In this paper, the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena, have been reviewed.
Abstract: This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998), who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of paral...

230 citations


Journal ArticleDOI
TL;DR: In this article, the transverse jet in supersonic crossflows has been summarized systematically from four aspects, namely single injection, multiport injection, interaction between jet and vortex generator, and interaction between the jet and shock wave.

216 citations


Journal ArticleDOI
TL;DR: This article showed that there has also been a shift in the location of the polar vortex towards Eurasia, which is related to cryospheric changes, with implications for mid-latitude weather.
Abstract: The Arctic winter polar vortex has weakened in recent years: this study shows that there has also been a shift in the location of the vortex towards Eurasia. This is related to cryospheric changes, with implications for mid-latitude weather.

202 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that confinement into a long and narrow macroscopic "racetrack" geometry stabilises bacterial motion to form a steady unidirectional circulation.
Abstract: Dense suspensions of swimming bacteria are known to exhibit collective behaviour arising from the interplay of steric and hydrodynamic interactions. Unconfined suspensions exhibit transient, recurring vortices and jets, whereas those confined in circular domains may exhibit order in the form of a spiral vortex. Here we show that confinement into a long and narrow macroscopic 'racetrack' geometry stabilises bacterial motion to form a steady unidirectional circulation. This motion is reproduced in simulations of discrete swimmers that reveal the crucial role that bacteria-driven fluid flows play in the dynamics. In particular, cells close to the channel wall produce strong flows which advect cells in the bulk against their swimming direction. We examine in detail the transition from a disordered state to persistent directed motion as a function of the channel width, and show that the width at the crossover point is comparable to the typical correlation length of swirls seen in the unbounded system. Our results shed light on the mechanisms driving the collective behaviour of bacteria and other active matter systems, and stress the importance of the ubiquitous boundaries found in natural habitats.

Journal ArticleDOI
TL;DR: In this article, a system is proposed to generate vortex electromagnetic (EM) beams in the microwave band, which generates high-order vortex beams at the X-frequency band for the first time.
Abstract: A system is proposed to generate vortex electromagnetic (EM) beams in the microwave band, which generates high-order vortex beams at the X-frequency band for the first time. First, the orbital angular momentum (OAM)-generating system is designed and the signal model based on the uniform circular array is presented. Subsequently, the mathematical model with array error contributions is established and, comprehensively, numerical simulations are conducted to analyze how amplitude and phase errors affect the radiation field and the EM vortex imaging. The experimental results validate that the proposed system can readily generate vortex beams of high quality, which are in agreement with the simulated results. The work paves the way to applications of OAM-carrying beams as well as a novel information-rich radar paradigm.

Journal Article
TL;DR: In this article, the authors use a fast simulation method that captures oriented cell-cell and cell-fluid interactions in a minimal model of discrete particle systems to predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows.
Abstract: Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms.

Journal ArticleDOI
TL;DR: An emerging new paradigm of critical current by design is discussed-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.
Abstract: The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

Journal ArticleDOI
TL;DR: This work locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking and illustrates the performance of this technique by identifying coherent Lagrangian vortice in several two- and three-dimensional flows.
Abstract: One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

Journal ArticleDOI
TL;DR: Using a (3+1)D viscous hydrodynamic model with fluctuating initial conditions from a multiphase transport (AMPT) model, two vortical structures are revealed: a right-handed toroidal structure around each beam direction for transverse vorticity and pairing of longitudinal vortices with opposite signs in the transverse plane.
Abstract: Fermions become polarized in a vortical fluid due to spin-vorticity coupling, and the polarization density is proportional to the local fluid vorticity. The radial expansion converts spatial vortical structures in the transverse plane to spin correlations in the azimuthal angle of final Λ hyperons' transverse momentum in high-energy heavy-ion collisions. Using a (3+1)D viscous hydrodynamic model with fluctuating initial conditions from a multiphase transport (AMPT) model, we reveal two vortical structures that are common in many fluid dynamic systems: a right-handed toroidal structure around each beam direction for transverse vorticity and pairing of longitudinal vortices with opposite signs in the transverse plane. The calculated azimuthal correlation of the transverse spin is shown to have a cosine form plus an offset due to the toroidal structure of the transverse vorticity around the beam direction and the global spin polarization. The longitudinal spin correlation in the azimuthal angle shows an oscillatory structure due to multiple vorticity pairs in the transverse plane. Mechanisms of these vortical structures, physical implications of hyperon spin correlations, dependence on colliding energy, rapidity, centrality, and sensitivity to the shear viscosity are also investigated.

Journal ArticleDOI
TL;DR: It is demonstrated that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter, and unexpected vortex ordering is discovered at this wet–dry crossover.
Abstract: Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.

Journal ArticleDOI
TL;DR: In this paper, the near and far wakes of a low-solidity two-straight-bladed vertical axis wind turbine were investigated with two-and three-dimensional computational fluid dynamics (CFD) simulations.

Journal ArticleDOI
TL;DR: An observation of half-quantum vortices (HQVs) in the polar phase of superfluid ^{3}He-A, providing a pathway for studies of unpaired Majorana modes bound to the HQV cores in the Polar-distorted A phase.
Abstract: One of the most sought-after objects in topological quantum-matter systems is a vortex carrying half a quantum of circulation. They were originally predicted to exist in superfluid ^{3}He-A but have never been resolved there. Here we report an observation of half-quantum vortices (HQVs) in the polar phase of superfluid ^{3}He. The vortices are created with rotation or by the Kibble-Zurek mechanism and identified based on their nuclear magnetic resonance signature. This discovery provides a pathway for studies of unpaired Majorana modes bound to the HQV cores in the polar-distorted A phase.

Journal ArticleDOI
TL;DR: This work demonstrates that the simple scaling found in previous works corresponds to the collapse of this scenario for the particular case of pure (single-mode) OAM driving fields, and derives a general conservation rule for the nonperturbative OAM buildup.
Abstract: High-order harmonic generation (HHG) has been recently proven to produce extreme-ultraviolet (XUV) vortices from the nonlinear conversion of infrared twisted beams. Previous works have demonstrated a linear scaling law of the vortex charge with the harmonic order. We demonstrate that this simple law hides an unexpectedly rich scenario for the buildup of orbital angular momentum (OAM) due to the nonperturbative behavior of HHG. The complexity of these twisted XUV beams appears only when HHG is driven by nonpure vortex modes, where the XUV OAM content is dramatically increased. We explore the underlying mechanisms for this diversity and derive a general conservation rule for the nonperturbative OAM buildup. The simple scaling found in previous works corresponds to the collapse of this scenario for the particular case of pure (single-mode) OAM driving fields.

Journal ArticleDOI
TL;DR: In this article, the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks was investigated, and the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA) was investigated.
Abstract: Aims. Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks.Methods. We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μ m to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA).Results. Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the formation and evolution of streamwise vortices at a low Reynolds number of, providing insight into both the averaged and time-dependent flow patterns.
Abstract: Sinusoidal modifications to the leading edge of a foil, or tubercles, have been shown to improve aerodynamic performance under certain flow conditions. One of the mechanisms of performance enhancement is believed to be the generation of streamwise vortices, which improve the momentum exchange in the boundary layer. This experimental and numerical study investigates the formation and evolution of these streamwise vortices at a low Reynolds number of , providing insight into both the averaged and time-dependent flow patterns. Furthermore, the strength of the vortices is quantified through calculation of the vorticity and circulation, and it is found that the circulation increases in the downstream direction. There is strong agreement between the experimental and numerical observations, and this allows close examination of the flow structure. The results demonstrate that the presence of strong pressure gradients near the leading edge gives rise to a significant surface flux of vorticity in this region. As soon as this vorticity is created, it is stretched, tilted and diffused in a highly three-dimensional manner. These processes lead to the generation of a pair of streamwise vortices between the tubercle peaks. A horseshoe-shaped separation zone is shown to initiate behind a tubercle trough, and this region of separation is bounded by a canopy of boundary-layer vorticity. Along the sides of this shear layer canopy, a continued influx of boundary-layer vorticity occurs, resulting in an increase in circulation of the primary streamwise vortices in the downstream direction. Flow visualisation and particle image velocimetry studies support these observations and demonstrate that the flow characteristics vary with time, particularly near the trailing edge and at a higher angle of attack. Numerical evaluation of the lift and drag coefficients reveals that, for this particular flow regime, the performance of a foil with tubercles is slightly better than that of an unmodified foil.

Journal ArticleDOI
TL;DR: In this paper, the authors show that a sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation.

Journal ArticleDOI
TL;DR: The vortex interactions in two-dimensional decaying isotropic turbulence are examined and it is found that the vortical-interaction network can be characterized by a weighted scale-free network.
Abstract: The present paper reports on our effort to characterize vortical interactions in complex fluid flows through the use of network analysis. In particular, we examine the vortex interactions in two-dimensional decaying isotropic turbulence and find that the vortical-interaction network can be characterized by a weighted scale-free network. It is found that the turbulent flow network retains its scale-free behaviour until the characteristic value of circulation reaches a critical value. Furthermore, we show that the two-dimensional turbulence network is resilient against random perturbations, but can be greatly influenced when forcing is focused towards the vortical structures, which are categorized as network hubs. These findings can serve as a network-analytic foundation to examine complex geophysical and thin-film flows and take advantage of the rapidly growing field of network theory, which complements ongoing turbulence research based on vortex dynamics, hydrodynamic stability, and statistics. While additional work is essential to extend the mathematical tools from network analysis to extract deeper physical insights of turbulence, an understanding of turbulence based on the interaction-based network-theoretic framework presents a promising alternative in turbulence modelling and control efforts.

Journal ArticleDOI
TL;DR: This work designs and demonstrates gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range.
Abstract: Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient–rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

Journal ArticleDOI
TL;DR: In this article, a 3D direct numerical simulation of flow past a circular cylinder over a range of Reynolds number ( ) up to 300 is presented, where the authors investigate the mode swapping process in detail with the aid of numerical flow visualization and find that the mode B structures are developed based on the streamwise vortices of mode A or A* which destabilize the braid shear layer region.
Abstract: This paper presents three-dimensional (3D) direct numerical simulations (DNS) of flow past a circular cylinder over a range of Reynolds number ( ) up to 300. The gradual wake transition process from mode A* (i.e. mode A with large-scale vortex dislocations) to mode B is well captured over a range of from 230 to 260. The mode swapping process is investigated in detail with the aid of numerical flow visualization. It is found that the mode B structures in the transition process are developed based on the streamwise vortices of mode A or A* which destabilize the braid shear layer region. For each case within the transition range, the transient mode swapping process consists of dislocation and non-dislocation cycles. With the increase of , it becomes more difficult to trigger dislocations from the pure mode A structure and form a dislocation cycle, and each dislocation stage becomes shorter in duration, resulting in a continuous decrease in the probability of occurrence of mode A* and a continuous increase in the probability of occurrence of mode B. The occurrence of mode A* results in a relatively strong flow three-dimensionality. A critical condition is confirmed at approximately , where the weakest flow three-dimensionality is observed, marking a transition from the disappearance of mode A* to the emergence of increasingly disordered mode B structures.

Journal ArticleDOI
TL;DR: In this paper, a scheme based on multi-arm coiling slits is proposed to generate stable acoustic vortices in a broadband. But the proposed scheme requires the use of a bulky loudspeaker.
Abstract: We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications

Journal ArticleDOI
TL;DR: In this paper, the authors show that steady zonal jets are driven by deep convective flows, whereas anticyclonic vortices form where upwelling plumes impinge on the shallow layer.
Abstract: Jupiter’s banded cloud layer contains enigmatic jets and vortices. Numerical simulations show that both features originate at depth in giant planet atmospheres, with vortices developing in areas of upwelling to shallow layers. Jupiter’s banded cloud layer hosts spots of various sizes. The bands are defined by eastward and westward jet streams and the spots correspond to vortices, predominantly anticyclones, which rotate in the opposite direction of Earth’s cyclonic storms1,2,3. Despite 350 years of observation4, the origin and dynamics of jets and vortices in the atmospheres of giant planets remain debated. Simulations of the shallow weather layer produce both features, but only reproduce observed prograde equatorial flow on Jupiter and Saturn under special conditions5,6. In contrast, deep convection models reproduce equatorial superrotation, but lack coherent vortices7,8,9,10,11. Here we combine both approaches in a three-dimensional simulation where deep convection grades into a stably stratified shallow layer. We find that steady zonal jets are driven by deep convective flows, whereas anticyclonic vortices form where upwelling plumes impinge on the shallow layer. The simulated vortex circulation consists of cool anticyclones shielded by warm downwelling cyclonic rings and filaments, in agreement with observations and theory3,12,13,14,15. We find that the largest vortices form in westward anticyclonic shear flow nearest to the equatorial jet, similar to Saturn’s so-called storm alley16 and Jupiter’s Great Red Spot. We conclude that vortices have a deep origin in gas giant atmospheres.

Journal ArticleDOI
TL;DR: In this article, the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust were investigated, and the authors obtained maximum shift angles of about 25 degrees.
Abstract: We investigate the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust. Our simulations adopt a ring-like gas density profile that becomes unstable against the Rossby-wave instability and forms a large crescent-shaped vortex. When gas self-gravity is discarded, but the indirect force from the displacement of the star by the vortex is included, we confirm that dust grains with stopping times of order the orbital time, which should be typically a few centimetres in size, are trapped ahead of the vortex in the azimuthal direction, while the smallest and largest grains concentrate towards the vortex centre. We obtain maximum shift angles of about 25 degrees. Gas self-gravity accentuates the concentration differences between small and large grains. At low to moderate disc masses, the larger the grains, the farther they are trapped ahead of the vortex. Shift angles up to 90 degrees are reached for 10 cm-sized grains, and we show that such large offsets can produce a double-peaked continuum emission observable at mm/cm wavelengths. This behaviour comes about because the large grains undergo horseshoe U-turns relative to the vortex due to the vortex's gravity. At large disc masses, since the vortex's pattern frequency becomes increasingly slower than Keplerian, small grains concentrate slightly beyond the vortex and large grains form generally non-axisymmetric ring-like structures around the vortex's radial location. Gas self-gravity therefore imparts distinct trapping locations for small and large dust grains which may be probed by current and future observations, and which suggest that the formation of planetesimals in vortices might be more difficult than previously thought.

Journal ArticleDOI
TL;DR: In this paper, the effects of wing-body interaction on aerodynamic performance and vortex dynamics have been numerically investigated in the forward flight of cicadas and the results showed that due to WBIs, the WB model had a 18.7% increase in total lift production compared with the lift generated in both the BD and WN models, and about 65% of this enhancement was attributed to the body.
Abstract: The effects of wing–body interaction (WBI) on aerodynamic performance and vortex dynamics have been numerically investigated in the forward flight of cicadas. Flapping wing kinematics was reconstructed based on the output of a high-speed camera system. Following the reconstruction of cicada flight, three models, wing–body (WB), body-only (BD) and wings-only (WN), were then developed and evaluated using an immersed-boundary-method-based incompressible Navier–Stokes equations solver. Results have shown that due to WBIs, the WB model had a 18.7 % increase in total lift production compared with the lift generated in both the BD and WN models, and about 65 % of this enhancement was attributed to the body. This resulted from a dramatic improvement of body lift production from 2 % to 11.6 % of the total lift produced by the wing–body system. Further analysis of the associated near-field and far-field vortex structures has shown that this lift enhancement was attributed to the formation of two distinct vortices shed from the thorax and the posterior of the insect, respectively, and their interactions with the flapping wings. Simulations are also used to examine the new lift enhancement mechanism over a range of minimum wing–body distances, reduced frequencies and body inclination angles. This work provides a new physical insight into the understanding of the body-involved lift-enhancement mechanism in insect forward flight.