scispace - formally typeset
Search or ask a question

Showing papers on "Vortex shedding published in 2014"


Journal ArticleDOI
TL;DR: In this article, a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous leading-edge suction parameter (LESP) was proposed.
Abstract: Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin aerofoil theory, this leading-edge suction parameter (LESP) is related to the term in the Fourier series representing the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and forces resulting from intermittent LEV shedding, thus validating the LESP concept.

226 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the free transverse flow-induced vibration (FIV) of an elastically mounted low-mass-ratio square cylinder in a free stream, at three different incidence angles: α = 0, 20, and 45.
Abstract: This study investigates the free transverse flow-induced vibration (FIV) of an elastically mounted low-mass-ratio square cylinder in a free stream, at three different incidence angles: α = 0◦ , 20◦ and 45◦ . This geometric setup presents a body with an angle of attack, sharp corners and some afterbody, and therefore is a generic body that can be used to investigate a wide range of FIV phenomena. A recent study by Nemes et al. (J. Fluid Mech., vol. 710, 2012, pp. 102–130) provided a broad overview of the flow regimes present as a function of both the angle of attack α and reduced flow velocity U∗. Here, the focus is on the three aforementioned representative angles of attack: α = 0◦ , where the FIV is dominated by transverse galloping; α = 45◦ , where the FIV is dominated by vortex-induced vibration (VIV); and an intermediate value of α = 20◦, where the underlying FIV phenomenon has previously been difficult to determine. For the α = 0◦ case, the amplitude of oscillation increases linearly with the flow speed except for a series of regimes that occur when the vortex shedding frequency is in the vicinity of an odd-integer multiple of the galloping oscillation frequency, and the vortex shedding synchronizes to this multiple of the oscillation frequency. It is shown that only odd-integer multiple synchronizations should occur. These synchronizations explain the ‘kinks’ in the galloping amplitude response for light bodies first observed by Bearman et al. (J. Fluids Struct., vol. 1, 1987, pp. 19–34). For the α = 45◦ case, the VIV response consists of a number of subtle, but distinctly different regimes, with five regimes of high-amplitude oscillations, compared to two found in the classic VIV studies of a circular cylinder. For the intermediate α = 20◦ case, a typical VIV ‘upper branch’ occurs followed by a ‘higher branch’ of very large-amplitude response. The higher branch is caused by a subharmonic synchronization between the vortex shedding and the body oscillation frequency, where two cycles of vortex shedding occur over one cycle of oscillation. It appears that this subharmonic synchronization is a direct result of the asymmetric body. Overall, the FIV of the square cylinder is shown to be very rich, with a number of distinct regimes, controlled by both α and U∗. Importantly, α controls the underlying FIV phenomenon, as well as controlling the types of possible synchronization between the oscillation and vortex shedding.

154 citations


Journal ArticleDOI
TL;DR: In this article, an experimental investigation was conducted to assess the effectiveness of a suction flow control method for vortex-induced vibration (VIV) suppression, which uses a limited number of isolated suction holes to manipulate the vortex shedding in the wake behind a circular cylinder in order to reduce the unsteadiness of the dynamic wind loads acting on the cylinder.
Abstract: An experimental investigation was conducted to assess the effectiveness of a suction flow control method for vortex-induced vibration (VIV) suppression. The flow control method uses a limited number of isolated suction holes to manipulate the vortex shedding in the wake behind a circular cylinder in order to reduce the unsteadiness of the dynamic wind loads acting on the cylinder. The experimental study was performed at Re ≈ 3.0 × 104, i.e., in the typical Reynolds number range of VIV for the cables of cable-stayed bridges. In addition to measuring the surface pressure distributions to determine the resultant dynamic wind loads acting on the test model, a digital particle image velocimetry system was used to conduct detailed flow field measurements to reveal the changes in the shedding process of the unsteady wake vortex structures from the test model with and without the suction flow control. The effects of important controlling parameters (i.e., the azimuthal locations of the suction holes in respect to the oncoming airflow, the spanwise spacing between the suction holes, and the suction flow rate through the suction holes) on the wake flow characteristics, the surface pressure distributions, and the resultant dynamic wind loads were assessed quantitatively. While a higher suction flow rate and smaller spanwise spacing between the suction holes were beneficial to the effectiveness of the suction flow control, the azimuthal locations of the suction holes were found to be very critical for reducing the fluctuating amplitudes of the dynamic wind loads acting on the test model using the suction flow control method. With the suction holes located at the proper azimuthal locations on the test model (i.e., at the azimuthal angle of θ = 90° and 270° for the present study), the characteristics of the wake flow behind the test model were found to change significantly along the entire span of the test model, even though only a limited number of the isolated suction holes were used for the suction flow control. The detailed flow field measurements were correlated with the measured surface pressure distributions and the resultant dynamic wind loads acting on the test model to gain further insight into the fundamental mechanism of the suction flow control method for VIV suppression.

113 citations


Journal ArticleDOI
TL;DR: In this article, a delayed detached-eddy simulation of the transonic buffet over a supercritical airfoil is performed, and the results are compared to an unsteady Reynolds-averaged Navier-Stokes simulation using the same baseline model as well as experimental data.
Abstract: A delayed detached-eddy simulation of the transonic buffet over a supercritical airfoil is performed. The turbulence modeling approach is based on a one-equation closure, and the results are compared to an unsteady Reynolds-averaged Navier–Stokes simulation using the same baseline model as well as experimental data. The delayed detached-eddy simulation successfully predicts the self-sustained unsteady shock-wave/boundary-layer interaction associated with buffet. When separation occurs, the flow exhibits alternate vortex shedding and a spanwise undulation. The method also captures secondary fluctuations in the boundary layer that are not predicted by unsteady Reynolds-averaged Navier–Stokes simulation. A map of flow separation emphasizes the differences between the delayed detached-eddy simulation and unsteady Reynolds-averaged Navier–Stokes flow topologies. Statistical pressure distributions and velocity profiles help assess the performance of each model. They indicate that the delayed detached-eddy simul...

112 citations


Journal ArticleDOI
TL;DR: In this paper, a long-term wind and wind effect monitoring system was created to investigate full-scale wind-induced vibrations of a longspan suspension bridge with a central span of 1650m.

111 citations


Journal ArticleDOI
TL;DR: A simple self-consistent model is presented that provides a clear description of the saturation mechanism and quantitatively predicts the saturated amplitude and flow fields of the Bénard-von Kármán vortex shedding instability.
Abstract: The Benard–von Karman vortex shedding instability in the wake of a cylinder is perhaps the best known example of a supercritical Hopf bifurcation in fluid dynamics. However, a simplified physical description that accurately accounts for the saturation amplitude of the instability is still missing. Here, we present a simple self-consistent model that provides a clear description of the saturation mechanism and quantitatively predicts the saturated amplitude and flow fields. The model is formally constructed by a set of coupled equations governing the mean flow together with its most unstable eigenmode with finite size. The saturation amplitude is determined by requiring the mean flow to be neutrally stable. Without requiring any input from numerical or experimental data, the resolution of the model provides a good prediction of the amplitude and frequency of the vortex shedding as well as the spatial structure of the mean flow and the Reynolds stress.

108 citations


Journal ArticleDOI
TL;DR: In this article, the impact of the symmetry breaking caused by the forced rotation on the vortex-induced vibration (VIV) mechanisms is investigated for a Reynolds number equal to 100, based on the cylinder diameter and inflow velocity.
Abstract: The flow-induced vibrations of a circular cylinder, free to oscillate in the cross-flow direction and subjected to a forced rotation about its axis, are analysed by means of two- and three-dimensional numerical simulations. The impact of the symmetry breaking caused by the forced rotation on the vortex-induced vibration (VIV) mechanisms is investigated for a Reynolds number equal to 100, based on the cylinder diameter and inflow velocity. The cylinder is found to oscillate freely up to a rotation rate (ratio between the cylinder surface and inflow velocities) close to 4. Under forced rotation, the vibration amplitude exhibits a bell-shaped evolution as a function of the reduced velocity (inverse of the oscillator natural frequency) and reaches 1.9 diameters, i.e. three times the maximum amplitude in the non-rotating case. The free vibrations of the rotating cylinder occur under a condition of wake–body synchronization similar to the lock-in condition driving non-rotating cylinder VIV. The largest vibration amplitudes are associated with a novel asymmetric wake pattern composed of a triplet of vortices and a single vortex shed per cycle, the TCS pattern. In the low-frequency vibration regime, the flow exhibits another new topology, the U pattern, characterized by a transverse undulation of the spanwise vorticity layers without vortex detachment; consequently, free oscillations of the rotating cylinder may also develop in the absence of vortex shedding. The symmetry breaking due to the rotation is shown to directly impact the selection of the higher harmonics appearing in the fluid force spectra. The rotation also influences the mechanism of phasing between the force and the structural response.

107 citations


Journal ArticleDOI
TL;DR: In this article, the coherent structures of a turbulent wake generated behind a bluff three-dimensional axisymmetric body are investigated experimentally at a diameter-based Reynolds number of ∼2 × 105.
Abstract: The coherent structures of a turbulent wake generated behind a bluff three-dimensional axisymmetric body are investigated experimentally at a diameter-based Reynolds number of ∼2 × 105. Proper orthogonal decomposition of base pressure measurements indicates that the most energetic coherent structures retain the structure of the symmetry-breaking laminar instabilities and are manifested as unsteady vortex shedding with azimuthal wavenumber m=±1. In a rotating reference frame, the shedding preserves the reflectional symmetry and is linked with a reflectionally symmetric mean pressure distribution on the base. Due to a slow rotation of the symmetry plane of the turbulent wake around the axis of the body, statistical axisymmetry is recovered in the time average. The ratio of the time scales associated with the slow rotation of the symmetry plane and the vortex shedding is of order 100. © Cambridge University Press 2014.

105 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the variation of the vortex shedding flow in the axial direction of the cylinder and studied the transition of the flow from two-dimensional (2D) to three-dimensional(3D) for VIV of a cylinder.

98 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the wake properties of a wind turbine rotor in a water flume using particle image velocimetry and laser Doppler anemometry.
Abstract: The flow behind a model of a wind turbine rotor is investigated experimentally in a water flume using particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The study performed involves a three-bladed wind turbine rotor designed using the optimization technique of Glauert (Aerodynamic Theory, vol. IV, 1935, pp. 169–360). The wake properties are studied for different tip speed ratios and free stream speeds. The data for the various rotor regimes show the existence of a regular Strouhal number associated with the development of an instability in the far wake of the rotor. From visualizations and a reconstruction of the flow field using LDA and PIV measurements it is found that the wake dynamics is associated with a precession (rotation) of the helical vortex core.

76 citations


Journal ArticleDOI
TL;DR: In this article, the authors focused on the assessment of different LES models (e.g. VMS or SIGMA models), as well as to show their capabilities of capturing the large scale turbulent flow structures in car-like bodies using relative coarse grids.

Journal ArticleDOI
TL;DR: A series of experiments describing the dynamic response resulting from vortex shedding excitation, on isolated long flexible cylinders with two different low mass ratios (mass to displaced fluid mass), are presented in this article.

Journal ArticleDOI
TL;DR: In this article, the flip-flop instability in the flow past two side-by-side circular cylinders is numerically investigated within the range of non-dimensional gap spacing and Reynolds number.
Abstract: In this work the flip–flop instability occurring in the flow past two side-by-side circular cylinders is numerically investigated within the range of non-dimensional gap spacing and Reynolds number . The inherent two-dimensional flow pattern is characterized by an asymmetric unsteady wake (with respect to the horizontal axis of symmetry) with the gap flow being deflected alternatively toward one of the cylinders. Such behaviour has been ascribed by other authors to a bistability of the flow, and therefore termed flip–flop. In contrast, the simulations performed herein provide new evidence that at low Reynolds numbers the flip–flopping state develops through an instability of the in-phase synchronized vortex shedding between the two cylinder wakes. This new scenario is confirmed and explained by means of a linear global stability investigation of the in-phase periodic base flow. The Floquet analysis reveals indeed that a pair of complex-conjugate multipliers becomes unstable having the same low frequency as the gap flow flip-over. The neutral curve of this secondary instability is tracked within the above range of gap spacing. The spatiotemporal shape of the unstable Floquet mode is then analysed and its structural sensitivity is considered in order to identify the ‘core’ region of the flip–flop instability mechanism.

Journal ArticleDOI
TL;DR: Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis and provide a useful measure of transition from steady to unsteady flow.
Abstract: For underwater vehicles to successfully detect and navigate turbulent flows, sensing the fluid interactions that occur is required. Fish possess a unique sensory organ called the lateral line. Sensory units called neuromasts are distributed over their body, and provide fish with flow-related information. In this study, a three-dimensional fish-shaped head, instrumented with pressure sensors, was used to investigate the pressure signals for relevant hydrodynamic stimuli to an artificial lateral line system. Unsteady wakes were sensed with the objective to detect the edges of the hydrodynamic trail and then explore and characterize the periodicity of the vorticity. The investigated wakes (Karman vortex streets) were formed behind a range of cylinder diameter sizes (2.5, 4.5 and 10 cm) and flow velocities (9.9, 19.6 and 26.1 cm s−1). Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis. The pressure difference from foremost to side sensors in the frontal plane provides us a useful measure of transition from steady to unsteady flow. The vortex shedding frequency (VSF) and its magnitude can be used to differentiate the source size and flow speed. Moreover, the distribution of the sensing array vertically as well as the laterally allows the Karman vortex paired vortices to be detected in the pressure signal as twice the VSF.

Journal ArticleDOI
TL;DR: In this article, a wall-mounted finite-length cylinder with an aspect ratio of 7 is investigated based on the proper orthogonal decomposition (POD) of the PIV data measured in three spanwise planes, i.e., z/d = 6, 3.5 and 1.0, near the cylinder free end, mid-span and fixed end (wall), respectively.
Abstract: The near wake of a wall-mounted finite-length square cylinder with an aspect ratio of 7 is investigated based on the proper orthogonal decomposition (POD) of the PIV data measured in three spanwise planes, i.e., z/d = 6, 3.5 and 1.0, near the cylinder free end, mid-span and fixed end (wall), respectively. The Reynolds number based on free-stream velocity (U ∞) and cylinder width (d) is 9,300. A two-dimensional (2D) square cylinder wake is also measured and analyzed at the same Reynolds number for the purpose of comparison. The structures of various POD modes show marked differences between the two flows. While the coefficients, a 1 and a 2, of the POD modes 1 and 2 occur within an annular area centered at a 1 = a 2 = 0 in the 2D wake, their counterparts are scattered all over the entire circular plane at z/d = 1.0 and 3.5 of the finite-length cylinder wake. Flow at z/d = 6 is dominated by POD mode 1, which corresponds to symmetrical vortex shedding and accounts for 54.0 % of the total turbulent kinetic energy (TKE). On the other hand, the POD modes 1 and 2, corresponding to anti-symmetrical vortex shedding, are predominant, accounting for about 45.0 % of the total TKE, at z/d = 3.5 and 1. It has been found that the flow structure may be qualitatively and quantitatively characterized by the POD coefficients. For example, at z/d = 6, a larger a 1 corresponds to a smaller length of flow reversal zone and a stronger downwash flow. At z/d = 3.5 and 1, two typical flow modes can be identified from a 1 and a 2. While large a 1 and/or a 2 correspond to anti-symmetrical vortex shedding, as in a 2D cylinder wake, small a 1 and a 2 lead to symmetrical vortex shedding. Any values between the large and small a 1 and/or a 2 correspond to the flow structure between these two typical flow modes. As such, the probability of occurrence of a flow structure may be determined from the distribution of the POD coefficients.

Journal ArticleDOI
TL;DR: In this article, the first two POD modes of the normal to the wall velocity component are coupled and they are representative of a vortex shedding phenomenon which is identified to be induced by Kelvin-Helmholtz instability.

Journal ArticleDOI
TL;DR: In this paper, a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel, and measurements of the mean drag and lift forces were obtained with a force balance.
Abstract: The flow around a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re = 7.3 × 104 for prism aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles from α = 0 deg to 45 deg. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the mean drag coefficient and Strouhal number were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The mean drag coefficient and Strouhal number for the finite prism were less sensitive to changes in incidence angle compared to the infinite square prism. The critical incidence angle, corresponding to minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number, shifted to a higher incidence angle compared to the infinite square prism, with values ranging from αcritical = 15 deg to 18 deg; this shift was greatest for the prisms of higher aspect ratio. The behavior of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of mean drag coefficient and mean lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0 deg and 15 deg. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30 deg and 45 deg, vortex shedding peaks were absent in the power spectra in the upper part of the wake.

Journal ArticleDOI
TL;DR: In this article, a twisted cylinder was designed by rotating the elliptic cross-section along the spanwise direction, resulting in a passive control, and the flow over the twisted cylinder is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation based on the finite volume method.
Abstract: We consider a twisted cylinder that was designed by rotating the elliptic cross-section along the spanwise direction, resulting in a passive control. The flow over the twisted cylinder is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation based on the finite volume method. For comparison, the flow past smooth and wavy cylinders is also calculated. The twisted cylinder achieves reductions of approximately 13 and 5 % in mean drag compared with smooth and wavy cylinders, respectively. In particular, the root mean square (r.m.s.) value of the lift fluctuation of the twisted cylinder shows a substantial decrease of approximately 96 % compared with the smooth cylinder. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and wavy cylinders, and vortex shedding from the twisted cylinder is considerably suppressed. Consequently, the elongation of the shear layer from the body and the near disappearance of vortex shedding in the near wake with weak vortical strength contributes directly to the reduction of drag and lift oscillation. Various fundamental mechanisms that affect the flow phenomena, three-dimensional separation, pressure coefficient, vortex formation length and turbulent kinetic energy are examined systematically to demonstrate the effect of the twisted cylinder surface. In addition, for the twisted cylinder at , the effect of the cross-sectional aspect ratio is investigated from 1.25 to 2.25 to find an optimal value that can reduce the drag and lift forces. Moreover, the effect of the Reynolds number on the aerodynamic characteristics is investigated in the range of . We find that as Re increases, the mean drag and the r.m.s. lift coefficient of the twisted cylinder increase, and the vortex formation length decreases.

Journal ArticleDOI
TL;DR: The findings suggest that vortical flows frequently encountered by aerial taxa in diverse environments may impose substantial energetic costs.
Abstract: Animal fliers frequently move through a variety of perturbed flows during their daily aerial routines. However, the extent to which these perturbations influence flight control and energetic expenditure is essentially unknown. Here, we evaluate the kinematic and metabolic consequences of flight within variably sized vortex shedding flows using five Anna's hummingbirds feeding from an artificial flower in steady control flow and within vortex wakes produced behind vertical cylinders. Tests were conducted at three horizontal airspeeds (3, 6 and 9 m s−1) and using three different wake-generating cylinders (with diameters equal to 38, 77 and 173% of birds' wing length). Only minimal effects on wing and body kinematics were demonstrated for flight behind the smallest cylinder, whereas flight behind the medium-sized cylinder resulted in significant increases in the variances of wingbeat frequency, and variances of body orientation, especially at higher airspeeds. Metabolic rate was, however, unchanged relative to that of unperturbed flight. Hummingbirds flying within the vortex street behind the largest cylinder exhibited highest increases in variances of wingbeat frequency, and of body roll, pitch and yaw amplitudes at all measured airspeeds. Impressively, metabolic rate under this last condition increased by up to 25% compared with control flights. Cylinder wakes sufficiently large to interact with both wings can thus strongly affect stability in flight, eliciting compensatory kinematic changes with a consequent increase in flight metabolic costs. Our findings suggest that vortical flows frequently encountered by aerial taxa in diverse environments may impose substantial energetic costs.

Journal ArticleDOI
TL;DR: In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is applied to actively suppress the two-dimensional vortex-induced vibrations (VIV) of an elastically mounted circular cylinder, free to move in in-line and cross-flow directions.

Journal ArticleDOI
TL;DR: In this article, a vortex-induced vibration (VIV) is introduced to disrupt the thermal boundary layer and thereby increase the heat transfer rate of air-cooled heat sinks.

Journal ArticleDOI
TL;DR: Torque measurements in Taylor-Couette flow, with large radius ratio and large aspect ratio, over a range of velocities up to a Reynolds number of 24,000 are presented in this paper.
Abstract: Torque measurements in Taylor–Couette flow, with large radius ratio and large aspect ratio, over a range of velocities up to a Reynolds number of 24 000 are presented. Following a specific procedure, nine states with distinct numbers of vortices along the axis were found and the aspect ratios of the vortices were measured. The relationship between the speed and the torque for a given number of vortices is reported. In the turbulent Taylor vortex flow regime, at relatively high Reynolds number, a change in behaviour is observed corresponding to intersections of the torque–speed curves for different states. Before each intersection, the torque for a state with a larger number of vortices is higher. After each intersection, the torque for a state with a larger number of vortices is lower. The exponent, from the scaling laws of the torque, always depends on the aspect ratio of the vortices. When the Reynolds number is rescaled using the mean aspect ratio of the vortices, only a partial collapse of the exponent data is found.

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional numerical simulation of acoustically excited flow through perforated orifices with different geometric shapes is conducted by using lattice Boltzmann method.

Journal ArticleDOI
TL;DR: In this paper, a circular cylinder with splitter plates has been used to investigate the aerodynamic differences between a bare cylinder and a semi-cylindrical roof, and it was found that a frontal splitter plate, with plate length to cylinder diameter ratio of L / D = 3, has produced a postcritical flow at relatively low Reynolds numbers by the generated disturbances in the approaching flow.

Journal ArticleDOI
TL;DR: In this article, the flow over a circular cylinder at Reynolds number 2 × 104 was predicted numerically using the technique of large-eddy simulation (LES), both incompressible and compressible flow formulations were used.
Abstract: The flow over a circular cylinder at Reynolds number 2 × 104 was predicted numerically using the technique of large-eddy simulation (LES). Both incompressible and compressible flow formulations were used. The present results obtained at a low-Mach number (M = 0.2) revealed significant inaccuracies like spurious oscillations of the compressible flow solution. A detailed investigation of such phenomena was carried out. It was found that application of blended central-difference or linear-upwind schemes could damp artificial waves significantly. However, this type of schemes has a too dissipative nature compared to pure central-differences. The incompressible flow results were found to be consistent with the existing numerical studies as well as with the experimental data. Basic flow features and flow mechanics were found to be in good agreement with existing experimental data and consistent with previously obtained LES. Special emphasis was put on the spectral analysis. Here, the classical Fourier transform as well as the continuous wavelet transform were applied. Based on the latter, the separated shear-layer instability was precisely clarified. It was found that the Reynolds number dependency between vortex shedding and shear-layer instabilities had a power law relation with n = 0.5.

Journal ArticleDOI
TL;DR: In this paper, an experimental investigation was conducted to characterize the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with and without cross beams.

Journal ArticleDOI
TL;DR: In this article, numerical studies on predicting onset of flow separation and vortex shedding in flow past unconfined two-dimensional elliptical cylinders for various Axis Ratios (AR) and a wide range of Angles of Attack (AOA).
Abstract: This article presents the numerical studies on predicting onset of flow separation and vortex shedding in flow past unconfined two-dimensional elliptical cylinders for various Axis Ratios (AR) and a wide range of Angles of Attack (AOA). An efficient Cartesian grid technique based immersed boundary method is used for numerical simulations. The laminar separation Reynolds number (Res) that marks separation of flow from surface and the critical Reynolds number (Recr) which represents transition from steady to unsteady flow are determined using diverse methods. A stability analysis which uses Stuart-Landau equation is also performed for calculating Recr. The shedding frequency (Stcr) that corresponds to Recr is calculated using Landau constants. The simulated results for circular cylinder are found to be in good agreement with the literature. The effects of AR and AOA on Res, Recr, and Stcr are studied. It is observed that the Res, Recr, and Stcr exhibit a direct/inverse relationship with AR depending upon th...

Journal ArticleDOI
TL;DR: In this article, two elastically coupled circular cylinders in side-by-side arrangement are investigated numerically and the Reynolds-averaged Navier-Stokes equations are solved by the finite element method for simulating the flow and the equation of motion is solved for calculating the vibration.

Journal ArticleDOI
TL;DR: In this paper, a rotating circular cylinder at a low Reynolds number of 150 and a low mass ratio of 2 is studied numerically. And the numerical results show that the rotation of the cylinder increases the response amplitude and widens the lock-in regime for the one-degree-of-freedom (1-dof) VIV in the cross-flow direction.
Abstract: Vortex-induced vibration (VIV) of a rotating circular cylinder at a low Reynolds number of 150 and a low mass ratio of 2 is studied numerically. Simulations are conducted at three rotation rates of α = 0, 0.5, and 1 and reduced velocities in the range of 1–13 with an interval of 0.2. The numerical results show that the rotation of the cylinder increases the response amplitude and widens the lock-in regime for the one-degree-of-freedom (1-dof) VIV in the cross-flow direction. The two-degree-of-freedom (2-dof) responses of the cylinder at α = 0.5 and 1 are significantly different from that at α = 0. For the 2-dof VIV, the response amplitude in the inline direction, which is much smaller than that in the cross-flow direction at α = 0, is increased significantly at α = 0.5 and 1. One initial branch is found at α = 0.5 and two initial branches are found at α = 1. In the initial branches, the response frequency locks onto a frequency that is smaller than the natural frequency of the cylinder and the response amplitude increases with the reduced velocity. The vortex shedding is found to be in the P+S mode for reduced velocities near the higher boundary of the initial branches and 2S mode in all other reduced velocity ranges for the 2-dof VIV. Simulations are conducted under both the increasing and decreasing reduced velocity conditions. A hysteresis region is found near the higher boundary of the lower branch for α = 0, 0.5, and 1 in the 1-dof of VIV and for α = 0 in the 2-dof VIV. The hysteresis region occurs near the higher boundary of the initial branches for α = 0.5 and 1 in the 2-dof VIV. By analysing the component of the force coefficient that is in phase with the velocity of the cylinder, it is found that pressure force excites the vibration and the viscous force damps the vibration in both the inline and the cross-flow directions in the 2-dof VIV. The magnitude of the time averaged pressure and viscous force coefficients that are in phase with the velocities of the cylinder in the lock-in regime are found to be much greater than their counterparts outside the lock-in regime.

Journal ArticleDOI
TL;DR: In this article, the authors investigated vortex-induced vibrations of an elliptic cylinder in the laminar flow regime, 60 ≤ Re ≤ 140, where the cylinder, in its mean position, is oriented such that either the major axis or the minor axis is aligned parallel to the free-stream flow.