scispace - formally typeset
Search or ask a question
Topic

Vortex shedding

About: Vortex shedding is a research topic. Over the lifetime, 10354 publications have been published within this topic receiving 251027 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the Detached-Eddy Simulation (DES) technique for smooth surface separation with laminar separation (LS) and turbulent separation (TS) at Reynolds numbers 50,000 and 140,000.
Abstract: The flow is calculated with laminar separation (LS) at Reynolds numbers 50,000 and 140,000, and with turbulent separation (TS) at140,000 and 3 × 106. The TS cases are effectively tripped, but compared with untripped experiments at very high Reynolds numbers. The finest grid has about 18,000 points in each of 56 grid planes spanwise; the resolution is far removed from Direct Numerical Simulations, and the turbulence model controls the separation if turbulent. The agreement is quite good for drag, shedding frequency, pressure, and skin friction. However the comparison is obscured by large modulations of the vortex shedding and drag which are very similar to those seen in experiments but also, curiously, durably different between cases especially of the LS type. The longest simulations reach only about 50 shedding cycles. Disagreement with experimental Reynolds stresses reaches about 30%, and the length of the recirculation bubble is about double that measured. The discrepancies are discussed, as are the effects of grid refinement, Reynolds number, and a turbulence-model curvature correction. The finest grid does not give the very best agreement with experiment. The results add to the validation base of the Detached-Eddy Simulation (DES) technique for smooth-surface separation. Unsteady Reynolds-averaged simulations are much less accurate than DES for LS cases, but very close for TS cases. Cases with a more intricate relationship between transition and separation are left for future study.

625 citations

Journal ArticleDOI
TL;DR: In this article, the Strouhal number and the mean base suction coefficient were measured at the mid-span position Reynolds numbers from about 50 to 4 × 104 were investigated.
Abstract: The investigation is concentrated on two important quantities – the Strouhal number and the mean base suction coefficient, both measured at the mid-span position Reynolds numbers from about 50 to 4 × 104 were investigated Different aspect ratios, at low blockage ratios, were achieved by varying the distance between circular end plates (end plate diameter ratios between 10 and 30) It was not possible, by using these end plates in uniform flow and at very large aspect ratios, to produce parallel shedding all over the laminar shedding regime However, parallel shedding at around mid-span was observed throughout this regime in cases when there was a slight but symmetrical increase in the free-stream velocity towards both ends of the cylinder At higher Re, the results at different aspect ratios were compared with those of a ‘quasi-infinite cylinder’ and the required aspect ratio to reach conditions independent of this parameter, within the experimental uncertainties, are given For instance, aspect ratios as large as L/D = 60–70 were needed in the range Re ≈ 4 × 103–104 With the smallest relative end plate diameter and for aspect ratios smaller than 7, a bi-stable flow switching between regular vortex shedding and ‘irregular flow’ was found at intermediate Reynolds number ranges in the subcritical regime (Re ≈ 2 × 103)

620 citations

Journal ArticleDOI
TL;DR: A class of low-order models for vortex-induced vibrations is analyzed in this article, where a van der Pol equation is used to describe the near wake dynamics describing the fluctuating nature of vortex shedding and several types of linear coupling terms modelling the fluid-structure interaction are considered.

616 citations

Journal ArticleDOI
TL;DR: In this article, the k-e-v2 model is used to predict the time-averaged properties of bluff body flow, which is necessary to resolve the coherent vortex shedding.
Abstract: Tlirbulent separated flows over a backstep, in a plane diffuser and around a triangular cylinder, are computed with the k-e-v2 model. These provide examples of massive separation, of smooth separation, and of unsteady vortex shedding. It is shown that to accurately predict the time-averaged properties of bluff body flow, it is necessary to resolve the coherent vortex shedding. The near-wall treatment of the v2-/22 system of equations is able to cope with both the massive and smooth separations. Good agreement between experiment and prediction is found in all

592 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Turbulence
112.1K papers, 2.7M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Laminar flow
56K papers, 1.2M citations
89% related
Vortex
72.3K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023313
2022625
2021388
2020375
2019364
2018382