scispace - formally typeset
Search or ask a question
Topic

Water column

About: Water column is a research topic. Over the lifetime, 13706 publications have been published within this topic receiving 496626 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The variable nutrient dynamics that the authors observed among the three study lakes appears to be typical for shallow lake systems, which indicates that a greater reliance on lake-specific research may be required for effective management, and a lesser role of inter-lake generalization than is possible for deeper, dimictic lake systems.

201 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Columbia River Estuary as a natural laboratory for understanding the circulation and density field of the estuaries of the US Columbia River and other rivers.

201 citations

Journal ArticleDOI
TL;DR: Danio rerio is a floodplain rather than riverine species, being most abundant in shallow lakes, ponds and ditches, typically in open locations with relatively clear water and abundant vegetation at the margins.
Abstract: The present study presents the results of a survey of a wide range of water bodies in Bangladesh to identify and describe Danio rerio habitat preferences. Field-based experiments were conducted to determine the vertical distribution of D. rerio in the water column, together with five other fish species commonly found in association with D. rerio. Danio rerio is a floodplain rather than riverine species, being most abundant in shallow lakes, ponds and ditches, typically in open locations with relatively clear water and abundant vegetation at the margins. It is commonly found in water bodies with a connection to rice cultivation and is more common in the north of Bangladesh than the south. Danio rerio occupies the whole of the water column and is observed as frequently in open water as amongst aquatic vegetation.

201 citations

Journal ArticleDOI
TL;DR: For example, in the Ross Sea polynya, the authors of as discussed by the authors found that the primary productivity in the upper 150 m of the water column ranged from 40 to 540 mg chlorophyll a (Chl a) m−2, exceeding 200 mg Chl a m− 2 everywhere except the extreme northern and eastern boundaries of the Ross sea polynyas.
Abstract: Patterns of nutrient utilization and primary productivity (PP) in late austral spring and early summer in the southwestern Ross Sea were characterized with respect to phytoplankton taxonomic composition, polynya dynamics, and upper ocean hydrography during the 1996–1997 oceanographic program Research on Ocean-Atmosphere Variability and Ecosystem Response in the Ross Sea. Phytoplankton biomass in the upper 150 m of the water column ranged from 40 to 540 mg chlorophyll a (Chl a) m−2, exceeding 200 mg Chl a m−2 everywhere except the extreme northern and eastern boundaries of the Ross Sea polynya. Diatom biomass was greatest in the shallow mixed layers of Terra Nova Bay, while the more deeply mixed waters of the Ross Sea polynya were dominated by Phaeocystis antarctica. Daily production computed from the disappearance of NO3 (1.14 g C m−2 d−1) and total dissolved inorganic carbon (TDIC, 1.29 g C m−2 d−1) is consistent with estimates made from an algorithm forced with satellite measurements of Chl a (1.25 g C m−2 d−1) and from measurements of 14C uptake (1.33 g C m−2 d−1). Phytoplankton PP in the Ross Sea averaged 100 g C m−2 yr−1 during 1996–1997. Despite the early formation of the Terra Nova Bay polynya the diatom bloom there did not reach its peak PP until middle to late January 1997 (most likely because of more intense wind mixing in November), ∼6 weeks after the P. antarctica bloom in the Ross Sea polynya had reached the same stage of development. From 70 to 100% of the C and N deficits in the upper 150 m could be accounted for by particulate organic matter, indicating that there had been little dissolved organic matter production or export of particulate material prior to our cruise. This suggests that early in the season, PP and zooplankton grazing are decoupled in the southwestern Ross Sea. The NO3∶PO4 disappearance ratio in waters dominated by P. antarctica (19.0±0.61) was significantly greater than in waters where diatoms were most common (9.52±0.33), and both were significantly different from the Redfield N∶P ratio of 16. Vertical profiles of TDIC suggest that P. antarctica took up 110% more CO2 per mole of PO4 removed than did diatoms, an important consideration for climate models that estimate C uptake from the removal of PO4.

201 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: A 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water is reported, supporting some of the most biomass-rich and active microbial communities in the deep sea.
Abstract: The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.

200 citations


Network Information
Related Topics (5)
Benthic zone
23.1K papers, 763.9K citations
95% related
Phytoplankton
24.6K papers, 930.1K citations
95% related
Sediment
48.7K papers, 1.2M citations
91% related
Ecosystem
25.4K papers, 1.2M citations
86% related
Sea ice
24.3K papers, 876.6K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023458
2022969
2021497
2020502
2019502
2018466