scispace - formally typeset
Search or ask a question
Topic

Water column

About: Water column is a research topic. Over the lifetime, 13706 publications have been published within this topic receiving 496626 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article showed that coral mucus, an important component of particulate organic matter in reef ecosystems, is a valuable substrate for microbial communities in the water column and sandy sediments of coral reefs.
Abstract: With in situ and laboratory chamber incubations we demonstrate that coral mucus, an important component of particulate organic matter in reef ecosystems, is a valuable substrate for microbial communities in the water column and sandy sediments of coral reefs. The addition of coral mucus to the water of benthic chambers placed on lagoon sands in the coral cay Heron Island, Aus- tralia, resulted in a rapid and significant increase in both O2 consumption and DIC production in the chambers. The permeable coral sands permitted the transport of mucus into the sediment with inter- facial water flows, resulting in the mucus being mainly (> 90%) degraded in the sediment and not in the water column of the chambers. A low ratio of 0.48 (in situ) to 0.64 (laboratory) for O2 consump- tion/DIC production after the addition of coral mucus, and high sulfate reduction rates (SRR) in natural sediments which were exposed to coral mucus, suggest a large contribution of anaerobic processes to the degradation of coral mucus. Oxygen penetrated less than 5 mm deep into these sediments. The microbial reaction to mucus addition was rapid, with a calculated in situ C turnover rate ranging from 7 to 18% h -1 . The degradation of coral mucus showed a dependency on the permeability of the carbonate sediments, with faster degradation and remineralization in coarse sands. This indicates the importance of permeable reef sediments for the trapping and degradation of organic matter. We suggest that coral mucus may have a function as a carrier of energy to the benthic microbial consumers.

162 citations

Journal ArticleDOI
TL;DR: Large-scale variability in phytoplankton structure is related to water column physical conditions and possibly iron availability, while mesoscale variability, as seen in coastal waters, is more likely due to seasonal succession of different algae groups.
Abstract: This paper describes spatial distribution patterns of the phytoplankton community (com- position, cell abundance and biomass concentration) in relation to local environmental conditions in the Southern Ocean. Sampling was performed during summer 1997 off the coast of the western Antarctic Peninsula between Anvers Island and Marguerite Bay. Phytoplankton was characterized by relatively low biomass throughout most of the study area and was dominated by nanoalgae (<20 µm). Phyto- plankton varied along an on-offshore gradient, with decreasing total cell abundance, chlorophyll a (chl a) concentration and carbon biomass toward the open ocean. Chl a concentration showed surface or subsurface maxima in coastal and middle-shelf waters, and deep maxima between ~40 and 100 m in oceanic waters. Across-shelf variability in phytoplankton correlated with vertical stability in the water column, which appears to be the major parameter affecting phytoplankton community structure in the area. We hypothesize that the deep chl a maximum offshore may be associated with iron limitation in near-surface waters and higher iron concentration in 'winter waters' (subsurface remnant of Antarctic Surface Waters). On a smaller spatial scale, a cluster analysis showed great regional variability in phyto- plankton assemblages. The area was divided into 4 main regions based on differences in the phyto- plankton composition and concentration. Three peaks in phytoplankton abundance were found on a north-to-south gradient in near-shore waters: a Cryptomonas spp. bloom near Anvers Island, a small unidentified phytoflagellate bloom in Grandidier Channel, and a diatom bloom in Marguerite Bay. These assemblages resemble different stages of the phytoplankton seasonal succession, and may be related to the progressive sea-ice retreat, which might have regulated the timing of the onset of the phytoplank- ton seasonal succession in a north-south gradient. Biological environmental factors, such as seeding of the water column by epontic algae and selective zooplankton herbivory, are hypothesized to affect com- munity composition in coastal regions. We conclude that large-scale variability in phytoplankton com- munity structure is related to water column physical conditions and possibly iron availability, while mesoscale variability, as seen in coastal waters, is more likely due to seasonal succession of different algae groups.

162 citations

Journal ArticleDOI
TL;DR: Investigation of microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea indicates that the microbial communities sampled in this study are different from those identified in water column in other parts of the world.
Abstract: The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea.

162 citations

Journal ArticleDOI
TL;DR: It is confirmed that climate warming will alter phytoplankton structure and dynamics largely through effects on nutrient availability and sinking velocities, which may alter primary productivity, nutrient recycling, and higher trophic productivity.
Abstract: The performance of individual phytoplankton species is strongly governed by the thermal stratification's impact on vertical mixing within the water column, which alters the position of phytoplankton relative to nutrients and light. The present study documents shifts in phytoplankton structure and vertical positioning that have accompanied intensified long-term stratification in a natural ecosystem. Ordination analysis is used to extract gradients in phytoplankton composition in Lake Tahoe, an extremely nutrient-poor lake, over a 23-year period of records. Community structure in the 1980s was associated most strongly with resource availability (low nitrogen to phosphorus ratios, deeper euphotic zone depth), while intensified stratification dominated the phytoplankton structure since the late 1990s. Within diatoms, small-sized cells increased with reduced mixing, suggesting that suppressed turbulence provides them with a competitive advantage over large-sized cells. Among the morphologically diverse chlorophytes, filamentous and coenobial forms were favored under intensified stratification. The selection for small-sized diatoms is accompanied by a shoaling trend in their vertical position in the water column. In contrast, the motile flagellates displayed a deeper vertical positioning in recent years, indicating that optimal growth conditions shifted likely due to reduced upwelling of nutrients. As the thermal stratification of lakes and oceans is strongly linked to climate variables, the present study confirms that climate warming will alter phytoplankton structure and dynamics largely through effects on nutrient availability and sinking velocities. Intensified stratification should favor the expansion of small-sized species and species with the capability of buoyancy regulation, which may alter primary productivity, nutrient recycling, and higher trophic productivity.

162 citations

Journal ArticleDOI
TL;DR: Respirometry experiments revealed that the thermoregulatory behaviour observed in free-ranging fish was probably driven by the energetic expedient of maintaining the physiological status quo ­ i.e. avoiding bioenergically costly reacclimation processes.
Abstract: Atlantic cod (Gadus morhua L.), acclimated to 5 dC, were equipped with ultrasonic transmitters which allowed the continuous monitoring of their vertical movements and heart rate. Fish were then placed in a 125 m3 tower tank in which the various thermal conditions they encounter in their natural environment were reproduced. Physiological and behavioural responses of cod were followed in parallel to the induced environmental changes. The experimental conditions studied in the tower tank were also reproduced in a swimming respirometer, where oxygen consumption and heart rate could be monitored within the activity range of a free-swimming animal. In a homogeneous water column, a rise in temperature induced marked increases in fish swimming activity, heart rate and heart beat-to-beat variability. In a thermally stratified environment, voluntary activity also increased when the thermal structure of the water column was altered, though no temperature-dependent changes in heart rate were observed. In this case, fish avoided the new temperature conditions, exhibiting distinct thermoregulatory behaviour. Stratification of the water column also prompted daily cyclic changes in fish distribution, animals tending to be in deeper and colder water layers during the day and in shallower and warmer layers at night. Respirometry experiments revealed that the thermoregulatory behaviour observed in free-ranging fish was probably driven by the energetic expedient of maintaining the physiological status quo s i.e. avoiding bioenergically costly reacclimation processes. Indeed, acute temperature increases or decreases of 2.5 dC led to marked differences in oxygen consumption, with metabolic rate changes of 15 and 30 %, respectively. The persistent linear relationship between heart rate and oxygen consumption allowed us to estimate, from the heart rate recorded in free-swimming fish, the entire range of metabolic responses that cod underwent voluntarily while experiencing a thermally stratified water column. The most profound metabolic effect, however, was observed with feeding, when oxygen consumption increased by as much as 80 %, resulting in an estimated 90 % reduction in their subsequent scope for activity.

162 citations


Network Information
Related Topics (5)
Benthic zone
23.1K papers, 763.9K citations
95% related
Phytoplankton
24.6K papers, 930.1K citations
95% related
Sediment
48.7K papers, 1.2M citations
91% related
Ecosystem
25.4K papers, 1.2M citations
86% related
Sea ice
24.3K papers, 876.6K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023458
2022969
2021497
2020502
2019502
2018466