scispace - formally typeset
Search or ask a question
Topic

Water cooling

About: Water cooling is a research topic. Over the lifetime, 94473 publications have been published within this topic receiving 457677 citations. The topic is also known as: T-Line.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A comprehensive review of various possible methods for heating and cooling in buildings is discussed in this article, where the thermal performance of various types of systems like PCM trombe wall, PCM wallboards, and PCM shutters are presented.
Abstract: A comprehensive review of various possible methods for heating and cooling in buildings are discussed in this paper. The thermal performance of various types of systems like PCM trombe wall, PCM wallboards, PCM shutters, PCM building blocks, air-based heating systems, floor heating, ceiling boards, etc., is presented in this paper. All systems have good potential for heating and cooling in building through phase change materials and also very beneficial to reduce the energy demand of the buildings.

839 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors present an overview of various cooling methods that can be employed for photovoltaic cells, including linear concentrators, single-cell arrangements, and densely packed photovolastic cells.
Abstract: Cooling of photovoltaic cells is one of the main concerns when designing concentrating photovoltaic systems. Cells may experience both short-term (efficiency loss) and long-term (irreversible damage) degradation due to excess temperatures. Design considerations for cooling systems include low and uniform cell temperatures, system reliability, sufficient capacity for dealing with ‘worst case scenarios’, and minimal power consumption by the system. This review presents an overview of various methods that can be employed for cooling of photovoltaic cells. It includes the application to photovoltaic cells of cooling alternatives found in other fields, namely nuclear reactors, gas turbines and the electronics industry. Different solar concentrators systems are examined, grouped according to geometry. The optimum cooling solutions differ between single-cell arrangements, linear concentrators and densely packed photovoltaic cells. Single cells typically only need passive cooling, even for very high solar concentrations. For densely packed cells under high concentrations (>150 suns), an active cooling system is necessary, with a thermal resistance of less than 10 −4 K m 2 /W. Only impinging jets and microchannels have been reported to achieve such low values. Two-phase forced convection would also be a viable alternative.

593 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors investigated the behavior and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle-water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components.
Abstract: We have experimentally investigated the behaviour and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle–water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components. Experimental data, obtained for turbulent flow regime, have clearly shown that the inclusion of nanoparticles into distilled water has produced a considerable enhancement of the cooling block convective heat transfer coefficient. For a particular nanofluid with 6.8% particle volume concentration, heat transfer coefficient has been found to increase as much as 40% compared to that of the base fluid. It has also been found that an increase of particle concentration has produced a clear decrease of the heated component temperature. Experimental data have clearly shown that nanofluid with 36 nm particle diameter provides higher heat transfer coefficients than the ones of nanofluid with 47 nm particle size.

507 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors provided estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States, and provided the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.
Abstract: This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available. Major findings of the report include: water withdrawal and consumption factors vary greatly across and within fuel technologies, and water factors show greater agreement when organized according to cooling technologies as opposed to fuel technologies; a transition to a less carbon-intensive electricity sector could result in either an increase or a decrease in water use, depending on the choice of technologies and cooling systems employed; concentrating solar power technologies and coal facilities with carbon capture and sequestration capabilities have the highest water consumption values when using a recirculating cooling system; and non-thermal renewables, such as photovoltaics and wind, have the lowest water consumption factors. Improved power plant data and further studies into the water requirements of energy technologies in different climatic regions would facilitate greater resolution in analyses of water impacts of future energy and economic scenarios. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

459 citations

PatentDOI

[...]

05 Oct 2001
TL;DR: In this paper, a cooling system is configured to adjust cooling fluid flow to various racks located throughout a data center based upon the detected or anticipated temperatures at various locations throughout the data center.
Abstract: A cooling system is configured to adjust cooling fluid flow to various racks located throughout a data center based upon the detected or anticipated temperatures at various locations throughout the data center. In one respect, by substantially increasing the cooling fluid flow to those racks dissipating greater amounts of heat and by substantially decreasing the cooling fluid flow to those racks dissipating lesser amounts of heat, the amount of energy required to operate the cooling system may be relatively reduced. Thus, instead of operating the devices, e.g., compressors, fans, etc., of the cooling system at substantially 100 percent of the anticipated heat dissipation from the racks, those devices may be operated according to the actual cooling needs. In addition, the racks may be positioned throughout the data center according to their anticipated heat loads to thereby enable computer room air conditioning (CRAC) units located at various positions throughout the data center to operate in a more efficient manner. In one respect, the positioning of the racks may be determined through implementation of numerical modeling and metrology of the cooling fluid flow throughout the data center. In addition, the numerical modeling may be implemented to control the volume flow rate and velocity of the cooling fluid flow through each of the vents.

432 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
84% related
Combustion
172.3K papers, 1.9M citations
77% related
Coating
379.8K papers, 3.1M citations
77% related
Finite element method
178.6K papers, 3M citations
76% related
Corrosion
152.8K papers, 1.9M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023284
2022504
20211,279
20203,541
20195,093
20185,792