scispace - formally typeset
Search or ask a question
Topic

Water cycle

About: Water cycle is a research topic. Over the lifetime, 6799 publications have been published within this topic receiving 271526 citations. The topic is also known as: hidrolojik döngü & hydrologic cycle.


Papers
More filters
Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring, which leads to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest.
Abstract: All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.

3,831 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined some aspects of the hydrological cycle that are robust across the models, including the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and decrease in the horizontal sensible heat transport in the extratropics.
Abstract: Using the climate change experiments generated for the Fourth Assessment of the Intergovernmental Panel on Climate Change, this study examines some aspects of the changes in the hydrological cycle that are robust across the models. These responses include the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and the decrease in the horizontal sensible heat transport in the extratropics. A surprising finding is that a robust decrease in extratropical sensible heat transport is found only in the equilibrium climate response, as estimated in slab ocean responses to the doubling of CO2, and not in transient climate change scenarios. All of these robust responses are consequences of the increase in lower-tropospheric water vapor.

3,811 citations

Journal ArticleDOI
07 Dec 2001-Science
TL;DR: Human activities are releasing tiny particles (aerosols) into the atmosphere that enhance scattering and absorption of solar radiation, which can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
Abstract: Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.

3,469 citations

Journal ArticleDOI
25 Aug 2006-Science
TL;DR: In this paper, the authors focus on the flow of water in natural and artificial reservoirs and reduce the vulnerability of people living under water stress to seasonal patterns and increasing probability of extreme events.
Abstract: Water is a naturally circulating resource that is constantly recharged. Therefore, even though the stocks of water in natural and artificial reservoirs are helpful to increase the available water resources for human society, the flow of water should be the main focus in water resources assessments. The climate system puts an upper limit on the circulation rate of available renewable freshwater resources (RFWR). Although current global withdrawals are well below the upper limit, more than two billion people live in highly water-stressed areas because of the uneven distribution of RFWR in time and space. Climate change is expected to accelerate water cycles and thereby increase the available RFWR. This would slow down the increase of people living under water stress; however, changes in seasonal patterns and increasing probability of extreme events may offset this effect. Reducing current vulnerability will be the first step to prepare for such anticipated changes.

2,814 citations

Journal ArticleDOI
TL;DR: There is a direct influence of global warming on precipitation as mentioned in this paper, as the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere.
Abstract: There is a direct influence of global warming on precipitation. Increased heating leads to greater evaporation and thus surface drying, thereby increasing the intensity and duration of drought. However, the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere. Hence, storms, whether individual thunderstorms, extratropical rain or snow storms, or tropical cyclones, supplied with increased moisture, produce more intense precipitation events. Such events are observed to be widely occurring, even where total precipitation is decreasing: 'it never rains but it pours!' This increases the risk of flooding. The atmo- spheric and surface energy budget plays a critical role in the hydrological cycle, and also in the slower rate of change that occurs in total precipitation than total column water vapor. With modest changes in winds, patterns of precipitation do not change much, but result in dry areas becoming drier (generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- to high latitudes: the 'rich get richer and the poor get poorer'. This pattern is simulated by climate mod- els and is projected to continue into the future. Because, with warming, more precipitation occurs as rain instead of snow and snow melts earlier, there is increased runoff and risk of flooding in early spring, but increased risk of drought in summer, especially over continental areas. However, with more precipitation per unit of upward motion in the atmosphere, i.e. 'more bang for the buck', atmo- spheric circulation weakens, causing monsoons to falter. In the tropics and subtropics, precipitation patterns are dominated by shifts as sea surface temperatures change, with El Nino a good example. The volcanic eruption of Mount Pinatubo in 1991 led to an unprecedented drop in land precipitation and runoff, and to widespread drought, as precipitation shifted from land to oceans and evaporation faltered, providing lessons for possible geoengineering. Most models simulate precipitation that occurs prematurely and too often, and with insufficient intensity, resulting in recycling that is too large and a lifetime of moisture in the atmosphere that is too short, which affects runoff and soil moisture.

2,525 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
91% related
Surface runoff
45.1K papers, 1.1M citations
89% related
Groundwater
59.3K papers, 1M citations
85% related
Climate change
99.2K papers, 3.5M citations
85% related
Global warming
36.6K papers, 1.6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023346
2022531
2021431
2020419
2019381
2018361