scispace - formally typeset
Search or ask a question
Topic

Water environment

About: Water environment is a research topic. Over the lifetime, 13384 publications have been published within this topic receiving 125138 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This contribution aims at reviewing the recent data describing the amino acid and peptide interaction with metal or oxide surfaces in the presence of water to reach an understanding of the molecule-(water)-surface interaction with a level of detail comparable to that of the UHV studies.
Abstract: Amino acids and peptides are often used as “model” segments of proteins for studying their behavior in various types of environments, and/or elaborating functional surfaces. Indeed, though the protein behavior is much more complex than that of their isolated segments, knowledge of the binding mode as well as of the chemical structure of peptides on metal or oxide surfaces is a significant step toward the control of materials in a biological environment. Such knowledge has considerably increased in the past few years, thanks to the combination of advanced characterization techniques and of modeling methods. Investigations of biomolecule–surface interactions in water/solvent environments are quite numerous, but only in a few cases is it possible to reach an understanding of the molecule–(water)–surface interaction with a level of detail comparable to that of the UHV studies. This contribution aims at reviewing the recent data describing the amino acid and peptide interaction with metal or oxide surfaces in ...

72 citations

Journal ArticleDOI
TL;DR: These findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole.
Abstract: Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine the Tapio decoupling model and the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to analyze the performance and driving factors of economic output and water environment pressure of provinces and cities in the Yangtze River Economic Belt from 2004 to 2018.

72 citations

Journal ArticleDOI
TL;DR: In this paper, single Fe atoms confined in two-dimensional MoS2 nanosheets (FexMo1-xS2) were used as highly reactive catalysts for heterogeneous activation of sulfite.
Abstract: Sulfite has been recently recognized as a source of radicals for oxysulfur radical-based advanced oxidation process due to its low cost and low toxicity. Inspired by sulfite oxidase enzyme, we demonstrate single Fe atoms confined in two-dimensional MoS2 nanosheets (FexMo1-xS2) as highly reactive catalysts for heterogeneous activation of sulfite, thereby promoting efficient oxidative degradation of propranolol in water. Highest propranolol degradation efficiency of ∼90 % was observed at pH 4.0. The Fe or Mo sites of FexMo1-xS2 activate sulfite via the Fe2+/Fe3+ or Mo4+/Mo5+/Mo6+ redox cycle. More importantly, the synergistic catalysis involving the Fe and Mo sites play an essential role. SO5 − is the major radical responsible for propranolol degradation with the 2nd-order rate constant of (1.1 ± 0.6)×107 M−1 s−1. Furthermore, the FexMo1-xS2/sulfite system is capable of degrading a wide range of recalcitrant organic pollutants and operating in a real water environment, suggesting its great potential in practical water treatment applications.

72 citations

Journal ArticleDOI
TL;DR: The available data suggest that two functions of USWS/EEG asymmetry during SWS in Cetaceans and fur seals are multisensory control of the environment and maintenance of motion and postures of sleep.
Abstract: We recorded EEG from both hemispheres and documented the state of the two eyes in two species of Cetaceans (one beluga and one bottlenose dolphin) and one species of Pinnipeds (two northern fur seals). In the dolphin and beluga we found that episodes of unihemispheric slow wave sleep (USWS) were associated with asymmetry in eye state. During USWS and asymmetrical SWS the eye contralateral to the sleeping hemisphere was mostly closed or in an intermediate state while the eye contralateral to the waking hemisphere was more often open or in an intermediate state. Bilateral eye opening indicated waking in about 80% cases and unilateral eye closure indicated USWS with an accuracy of about 75%. Bilateral eye closure was rare (< 2% of the observation time) and was not necessarily associated with high amplitude SWS. In fur seals, episodes of one eye briefly opening usually occurred in the beginning of sleep episodes and lasted several minutes. Those episodes were frequently associated with lower amplitude EEG slow waves in the contralateral brain hemisphere. During most of their sleep on land, fur seals had both eyes tightly closed. No EEG asymmetry was recorded at this time. Although eye state and EEG stage are correlated in the bottlenose dolphin, beluga and fur seals, short episodes of EEG synchrony (less then 1 min) occur contralateral to an open eye and waking (a more activated EEG) activity can be present contralateral to a closed eye. The available data suggest that two functions of USWS/EEG asymmetry during SWS in Cetaceans and fur seals are multisensory control of the environment and maintenance of motion and postures of sleep. The adaptive advantages of USWS throughout the evolution of Cetaceans and Pinnipeds from terrestrial mammals to present forms could include 1) the avoidance of predators and maintenance of contact with other animals of the same species; 2) continuance of regular breathing; 3) and effective thermoregulation in the water environment.

72 citations


Network Information
Related Topics (5)
Environmental pollution
100.4K papers, 1.1M citations
80% related
Sustainable development
101.4K papers, 1.5M citations
78% related
Wastewater
92.5K papers, 1.2M citations
77% related
Agriculture
80.8K papers, 1.3M citations
73% related
Ecosystem
25.4K papers, 1.2M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202239
2021932
2020869
2019980
20181,015
2017916