scispace - formally typeset
Search or ask a question

Showing papers on "Water flow published in 2014"


Journal ArticleDOI
14 Feb 2014-Science
TL;DR: This work investigates permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions, which reveal that the GO membrane can attract a high concentration of small ions into the membrane, which may explain the fast ion transport.
Abstract: Graphene-based materials can have well-defined nanometer pores and can exhibit low frictional water flow inside them, making their properties of interest for filtration and separation. We investigate permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions. The laminates are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves, blocking all solutes with hydrated radii larger than 4.5 angstroms. Smaller ions permeate through the membranes at rates thousands of times faster than what is expected for simple diffusion. We believe that this behavior is caused by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The anomalously fast permeation is attributed to a capillary-like high pressure acting on ions inside graphene capillaries.

2,055 citations


Journal ArticleDOI
TL;DR: A two-dimensional planar-structured triboelectric generator on the basis of contact electrification that can effectively harness various ambient motions and can be applied not only to self-powered electronics but also possibly to power generation at a large scale.
Abstract: Efficiently harvesting energy from ambient motion is important for realising cost-effective and clean electrical energy. Here, the authors report a planar-structured rotary triboelectric generator with 24% efficiency for obtaining power from light wind, body movement and water flow.

730 citations


Journal ArticleDOI
TL;DR: In this article, a systematic literature review was undertaken to analyse the linkages between different biodiversity attributes and 11 ecosystem services, and the majority of relationships between attributes and ecosystem services cited in the 530 studies were positive.
Abstract: A systematic literature review was undertaken to analyse the linkages between different biodiversity attributes and 11 ecosystem services. The majority of relationships between attributes and ecosystem services cited in the 530 studies were positive. For example, the services of water quality regulation, water flow regulation, mass flow regulation and landscape aesthetics were improved by increases in community and habitat area. Functional traits, such as richness and diversity, also displayed a predominantly positive relationship across the services, most commonly discussed for atmospheric regulation, pest regulation and pollination. A number of studies also discussed a positive correlation with stand age, particularly for atmospheric regulation. Species level traits were found to benefit a number of ecosystem services, with species abundance being particularly important for pest regulation, pollination and recreation, and species richness for timber production and freshwater fishing. Instances of biodiversity negatively affecting the examined ecosystem services were few in number for all ecosystem services, except freshwater provision. The review showed that ecosystem services are generated from numerous interactions occurring in complex systems. However, improving understanding of at least some of the key relationships between biodiversity and service provision will help guide effective management and protection strategies.

501 citations


Journal ArticleDOI
TL;DR: This Update integrates data and emphasizes the central role played by aquaporins in regulating plant water relations and demonstrates that variations in root and leaf hydraulic conductivity can be accounted for by Aquaporins but this must be integrated with anatomical considerations.
Abstract: Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key “gatekeeper” cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.

491 citations


Journal ArticleDOI
TL;DR: In this paper, an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA) was proposed.
Abstract: . The Ball–Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball–Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil–plant–atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball–Berry model in flux tower simulations, but was significantly better than the CLM Ball–Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball–Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic conductivity) minimized errors with the SPA stomatal model. The critical stomatal efficiency for optimization (ι) gave results consistent with relationships between maximum An and gs seen in leaf trait data sets and is related to the slope (g1) of the Ball–Berry model. Root hydraulic conductivity (Rr*) was consistent with estimates from literature surveys. The two central concepts embodied in the SPA stomatal model, that plants account for both water-use efficiency and for hydraulic safety in regulating stomatal conductance, imply a notion of optimal plant strategies and provide testable model hypotheses, rather than empirical descriptions of plant behavior.

288 citations


Journal ArticleDOI
TL;DR: In this article, the authors argue that the former approach is more applicable to natural and semi-natural rivers where the primary objective and opportunity is ecological conservation, and the latter "designer" approach is better suited to modified and managed rivers where return to natural conditions is no longer feasible and the objective is to maximize natural capital as well as support economic growth, recreation, or cultural history.
Abstract: The term “environmental flows” describes the quantities, quality, and patterns of water flows required to sustain freshwater and estuarine ecosystems and the ecosystem services they provide. Environmental flows may be achieved in a number of different ways, most of which are based on either (1) limiting alterations from the natural flow baseline to maintain biodiversity and ecological integrity or (2) designing flow regimes to achieve specific ecological and ecosystem service outcomes. We argue that the former practice is more applicable to natural and semi-natural rivers where the primary objective and opportunity is ecological conservation. The latter “designer” approach is better suited to modified and managed rivers where return to natural conditions is no longer feasible and the objective is to maximize natural capital as well as support economic growth, recreation, or cultural history. This permits elements of ecosystem design and adaptation to environmental change. In a future characterized by altered climates and intensive regulation, where hybrid and novel aquatic ecosystems predominate, the designer approach may be the only feasible option. This conclusion stems from a lack of natural ecosystems from which to draw analogs and the need to support broader socioeconomic benefits and valuable configurations of natural and social capital.

282 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the contribution of seagrasses to coastal protection through a review of the most relevant existing knowledge and concluded that the optimal conditions for enhancing the protection supplied might be achieved in shallow waters and low wave energy environments, with high interaction surface, at the vertical and horizontal dimension, between water flow and seagrase.

244 citations


Journal ArticleDOI
TL;DR: This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR, and focuses on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema.

240 citations


Journal ArticleDOI
TL;DR: In this paper, the polydopamine (PDA) was used to improve the mechanical properties of polyacylonitrile (PAN) and polysulfone (PSu) ENMs.

230 citations


Journal ArticleDOI
TL;DR: A review of sources, impacts and remediation processes for heavy metals in wastewater can be found in this paper, where the authors classified them into chemical and biological processes, with the former being more effective in the treatment of heavy metal pollutants in wastewater.

221 citations


Journal ArticleDOI
TL;DR: In this paper, the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha).

Journal ArticleDOI
TL;DR: This work investigated 4 different nanomaterials in 6 different water types ranging from a small stream to seawater, finding that system specific parameters are key to the development of dedicated water quality models for ENMs.

Journal ArticleDOI
TL;DR: In this article, a quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number, and several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion.
Abstract: This paper experimentally investigates the role of shear processes on the variation of critical Reynolds number and nonlinear flow through rough-walled rock fractures. A quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number. At each shear displacement, several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion. The results show that (i) the Forchheimer's law was fitted very well to experimental results of nonlinear fluid flow through rough-walled fractures, (ii) the coefficients of viscous and inertial pressure drops experience 4 and 7 orders of magnitude reduction during shear displacement, respectively, and (iii) the critical Reynolds number varies from 0.001 to 25 and experiences 4 orders of magnitude enlargement by increasing shear displacement from 0 to 20 mm. These findings may prove useful in proper understanding of fluid flow through rock fractures, or inclusions in computational studies of large-scale nonlinear flow in fractured rocks.

Journal ArticleDOI
TL;DR: Even if global WWTP effluent impact on the studied river appeared to be minor, PhACs resulted widespread pollutants in river waters, which can be particularly critical in summer in water scarcity areas, when water flow decreases considerably.

Journal ArticleDOI
TL;DR: In this paper, the Soil and Water Assessment Tool (SWAT) model was used to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-REServoir), created for environmental and recreational purposes.

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a laboratory study investigating the fluid (gas/water) transport properties in the matrix system of the Scandinavian Alum Shale, showing that the intrinsic permeability coefficients measured parallel and perpendicular to bedding were within the range previously reported for other shales and mudstones.

Journal ArticleDOI
TL;DR: This comparative review pulls together the relevant information gleaned from the literature that could be utilized to design moisture harvesting devices informed by biomimetics to establish a list of species whose habitat is in mainly dry or arid regions and that are known to harvest airborne moisture.
Abstract: Nature has adapted different methods for surviving dry, arid, xeric conditions. It is the focus of this comparative review to pull together the relevant information gleaned from the literature that could be utilized to design moisture harvesting devices informed by biomimetics. Most water harvesting devices in current use are not informed by nature and those that do are usually based on a biomimetic principle that has been based on one species only. This review draws on the published literature to establish a list of species (animals (vertebrates/invertebrates) and plants) whose habitat is in mainly dry or arid regions and that are known to harvest airborne moisture. Key findings have been outlined and review comments and discussion set out. Following this, surface feature convergences have been identified, namely hexagonal microstructures, groove-like and cone-like geometries. This has been coupled with direction of water flow that is driven by surface energy. As far as the authors are aware, this convergent evolution has not been brought together in this manner before. In the future this information could be translated into an engineered device for collecting water from airborne sources.

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper summarizes the existing body of research investigating natural and induced heat transport, and analyzes the progression in fundamental and natural process understanding through the qualitative and quantitative use of heat as a tracer.

Journal ArticleDOI
01 Jan 2014-Energy
TL;DR: In this article, a model of an integrated energy-based direct district water-heating system, which makes joint use of wind energy, solar energy, natural gas and electric energy, is proposed.

Journal ArticleDOI
TL;DR: GEOtop 2.0 as mentioned in this paper is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface, considering the radiative and turbulent fluxes.
Abstract: . GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.

Journal ArticleDOI
TL;DR: In this article, a two-dimensional axisymmetric simulator is developed to model the effects of heat transfer on the process of hydrate dissociation in porous media by depressurization.

Journal ArticleDOI
TL;DR: In this article, the authors simulated various climate scenarios with a range of agricultural best management practices to assess possible changes in water, sediment, and nutrient yields from four agricultural Lake Erie watersheds.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a forward model of seismic noise caused by turbulent flow and found that turbulent flow induced seismic noise operates at lower frequencies than bedload-induced noise, and the differences in the spectral signatures of turbulent flow-induced and bedload induced forces at the riverbed are significant enough that these two processes can be characterized independently using seismic records acquired at various distances from the river.
Abstract: Previous studies suggest that the seismic noise induced by rivers may be used to infer river transport properties, and previous theoretical work showed that bedload sediment flux can be inverted from seismic data. However, the lack of a theoretical framework relating water flow to seismic noise prevents these studies from providing accurate bedload fluxes and quantitative information on flow processes. Here we propose a forward model of seismic noise caused by turbulent flow. In agreement with previous observations, modeled turbulent flow-induced noise operates at lower frequencies than bedload-induced noise. Moreover, the differences in the spectral signatures of turbulent flow-induced and bedload-induced forces at the riverbed are significant enough that these two processes can be characterized independently using seismic records acquired at various distances from the river. In cases with isolated turbulent flow noise, we suggest that riverbed stress can be inverted. Finally, we validate our model by comparing predictions to previously reported observations. We show that our model captures the spectral peak located around 6–7 Hz and previously attributed to water flow at Hance Rapids in the Colorado River (United States); we also show that turbulent flow causes a significant part of the seismic noise recorded at the Trisuli River in Nepal, which reveals that the hysteresis curve previously reported there does not solely include bedload, but is also largely influenced by turbulent flow-induced noise. We expect the framework presented here to be useful to invert realistic bedload fluxes by enabling the removal of the turbulent flow contribution from seismic data.

Patent
05 Dec 2014
TL;DR: In this paper, a water use and/or a water energy use monitoring apparatus that is affixed to the hot and cold water supply piping for continuously (or on demand) monitoring displaying the water and water energy (hot vs. ambient) use within a residential or commercial building.
Abstract: The present invention is a water use and/or a water energy use monitoring apparatus that is affixed to the hot and cold water supply piping for continuously (or on demand) monitoring displaying the water and water energy (hot vs. ambient) use within a residential or commercial building. A first wire or wireless means is incorporated to communicate with a remote display for viewing by the owner of a commercial building or occupier/resident of a home. A second optional wire or wireless means can be incorporated that can be monitored by civil, commercial, governmental or municipal operators or agencies, using a remote display and/or recorder means or by a secure wire or wireless communication network (e.g. cell phone, smart phone or other similar technology communication means). A third wireless means communicates water parameter data utilizing typical cell tower technology and/or mesh network technology. The water use monitor apparatus includes a power generation, a microprocessor, temperature and water flow sensors, optional water quality sensors, timing circuits, wireless circuitry, and a display means. A wired or wireless means is designed to electronically communicate water use, water energy use and/or water quality information to a remotely located display apparatus or typical cell phone, smart phones, or similar apparatus for convenient observation by a commercial, operator or occupier, resident, municipal or government agency.

Journal ArticleDOI
TL;DR: Cymothoid isopods are obligate parasites of both marine and freshwater fishes and there are currently 40 recognised cymothoid genera worldwide as discussed by the authors, including Bopyridae, Cryptoniscidae, Cymothoids, Dajidae, Entoniscides, Gnathiidae and Tridentellidae.
Abstract: Of the 95 known families of Isopoda only a few are parasitic namely, Bopyridae, Cryptoniscidae, Cymothoidae, Dajidae, Entoniscidae, Gnathiidae and Tridentellidae. Representatives from the family Cymothoidae are obligate parasites of both marine and freshwater fishes and there are currently 40 recognised cymothoid genera worldwide. These isopods are large (>6 mm) parasites, thus easy to observe and collect, yet many aspects of their biodiversity and biology are still unknown. They are widely distributed around the world and occur in many different habitats, but mostly in shallow waters in tropical or subtropical areas. A number of adaptations to an obligatory parasitic existence have been observed, such as the body shape, which is influenced by the attachment site on the host. Cymothoids generally have a long, slender body tapering towards the ends and the efficient contour of the body offers minimum resistance to the water flow and can withstand the forces of this particular habitat. Other adaptations to this lifestyle include small sensory antennae and eyes; a very heavily thickened and calcified cuticle for protection; and sharply curved hooks on the ends of the pereopods which allows these parasites to attach to the host. Most cymothoids are highly site and host specific. Some of these parasitic cymothoids have been reported to parasitise the same host fish species for over 100 years, showing this species specificity. The site of attachment on the host (gills, mouth, external surfaces or inside the host flesh) can also be genus or species specific. This paper aims to provide a summary of our current knowledge of cymothoid biodiversity and will highlight their history of discovery, morphology, relationships and classification, taxonomic diversity and ecology.

BookDOI
TL;DR: In this paper, a study conducted in Bangladesh, which quantifies the prospective relationship between climate-induced changes in sea level, temperature, rainfall, and altered riverine flows from the Himalayas, and the spread and intensity of salinization on river water in the coastal zone for 2050.
Abstract: In a changing climate, saltwater intrusion is expected to worsen in low-lying coastal areas around the world. Understanding the physical and economic effects of salinity ingress, and planning adaptation, are key to the long-term development of countries for which sea level rise has been identified as a major risk from climate change. This paper presents a study conducted in Bangladesh, which quantifies the prospective relationship between climate-induced changes in sea level, temperature, rainfall, and altered riverine flows from the Himalayas, and the spread and intensity of salinization on river water in the coastal zone for 2050. The research takes into account the projected land subsidence of the Ganges Delta, as well as alternative scenarios of upstream withdrawal of freshwater. The findings indicate that climate change will cause significant changes in river salinity in the southwest coastal area of Bangladesh by 2050. These changes are likely to lead to significant shortages of drinking water in the coastal urban areas, scarcity of water for irrigation for dry-season agriculture, and significant changes in the coastal aquatic ecosystems. Changes in the availability of freshwater fish will likely affect the composition of capture fishery, although the increase in brackish water will enhance opportunities for brackish water aquaculture. Assessment of location-specific economic impacts of the changes in river salinity, identification of suitable adaptation alternatives, and costing of adaptation are high priorities for further analysis.

Journal ArticleDOI
TL;DR: In this paper, the authors tested the degree to which these contrasting water input patterns cause different near-surface hydrologic response on north-facing and south-facing hillslopes during the snowmelt period.
Abstract: In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north-facing slopes develop a seasonal snowpack, whereas Ponderosa pine-dotted south-facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near-surface hydrologic response on north-facing and south-facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10- and 30-cm depths on the north-facing slope and was transported out of soil waters within 40 days. On the south-facing slope, Br− was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus-1D corroborated these aspect-driven differences in subsurface transport. Our multiple lines of evidence suggest that north-facing slopes are dominated by connected flow through the soil matrix, whereas south-facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north-facing slopes. These differences in hydrologic response were largely a function of energy-driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a suction cup was covered with mucilage and placed in soil with a water content of 0.03 cm3 cm-3, and the root pressure probe technique was used to measure the hydraulic conductivity of the root-soil continuum.
Abstract: As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root–soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm–3, and used the root pressure probe technique to measure the hydraulic conductivity of the root–soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.

Journal ArticleDOI
TL;DR: In this article, a robust and computationally efficient algorithm for both whole-building and component-level energy fault detection and diagnosis (FDD) is presented, which is able to provide reliable estimation of multiple and simultaneous fault conditions, even in the presence of noisy and sometimes erroneous sensor data.

Journal ArticleDOI
TL;DR: In this paper, the authors reconstruct the anatomy of the 2011 rain-on-snow flood in the Lotschen valley (160 km 2 ) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model).
Abstract: A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lotschen Valley (160 km 2 ) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day -1 ) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.