scispace - formally typeset
Search or ask a question
Topic

Water scarcity

About: Water scarcity is a research topic. Over the lifetime, 11579 publications have been published within this topic receiving 228756 citations. The topic is also known as: water shortage.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change.

174 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantified the external water footprint of the Netherlands by partner country and import product and assessed the impact of this footprint by contrasting the geographically-explicit water footprint with water scarcity in different parts of the world.

173 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the implications of climate policy for exposure to water resources stresses and compare a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100.
Abstract: This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8–17% of the impact in 2050 and 20–31% in 2100; with the second measure, the avoided impacts are 5–21% and 15–47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.

172 citations

Journal ArticleDOI
TL;DR: In this paper, an agent-based modeling approach is proposed to explore system characteristics and mechanisms of resilience in a complex resource management system, based on a case study of water use in the Amudarya River, which is a semiarid river basin.
Abstract: The concept of resilience is widely promoted as a promising notion to guide new approaches to ecosystem and resource management that try to enhance a system's capacity to cope with change. A variety of mechanisms of resilience specific for different systems have been proposed. In the context of resource management those include but are not limited to the diversity of response options and flexibility of the social system to adaptively respond to changes on an adequate scale. However, implementation of resilience-based management in specific real-world systems has often proven difficult because of a limited understanding of suitable interventions and their impact on the resilience of the coupled social-ecological system. We propose an agent-based modeling approach to explore system characteristics and mechanisms of resilience in a complex resource management system, based on a case study of water use in the Amudarya River, which is a semiarid river basin. Water resources in its delta are used to sustain irrigated agriculture as well as aquatic ecosystems that provide fish and other ecosystem services. The three subsystems of the social-ecological system, i.e., the social system, the irrigation system, and an aquatic ecosystem, are linked by resource flows and the allocation decision making of actors on different levels. Simulation experiments are carried out to compare the resilience of different institutional settings of water management to changes in the variability and uncertainty of water availability. The aim is to investigate the influence of (1) the organizational structure of water management, (2) information on water availability, and (3) the diversity of water uses on the resilience of the system to short and long-term water scarcity. In this paper, the model concept and first simulation results are presented. As a first illustration of the approach the performances of a centralized and a decentralized regime are compared under different scenarios of information on water availability. Under the given conditions of a regularly fluctuating inflow and compliance of agents with orders from a national authority, the centralized system performs better as long as irrigation is the only type of water use. Diversification of resource use, e.g., irrigation and fishing, increases the performance of the decentralized regime and the resilience of both. Systematic analysis of the performance of different system structures will help to identify properties and mechanisms of resilience. This understanding will be valuable for the identification, development, and evaluation of management interventions in specific river basins.

171 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the potential impacts of climate change on the hydrology and water resources of the Seyhan River Basin in Turkey and used a dynamical downscaling method, referred to as the pseudo global warming method (PGWM), to connect the outputs of general circulation models (GCMs) and river basin hydrologic models.

170 citations


Network Information
Related Topics (5)
Climate change
99.2K papers, 3.5M citations
85% related
Sustainable development
101.4K papers, 1.5M citations
83% related
Sustainability
129.3K papers, 2.5M citations
82% related
Global warming
36.6K papers, 1.6M citations
82% related
Agriculture
80.8K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023562
20221,098
2021951
2020879
2019814
2018735