scispace - formally typeset
Search or ask a question
Topic

Wave flume

About: Wave flume is a research topic. Over the lifetime, 1627 publications have been published within this topic receiving 23335 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Matsumoto et al. as mentioned in this paper evaluated the armor block stability based on a flow field calculated by a numerical wave flume and determined the drag, inertia and lift coefficients for the Morison formula by using an exact 3D VOF-type numerical model.
Abstract: Matsumoto, A., Mano, A., Mitsui, J., and Hanzawa, M., 2013. Armor block stability of submerged breakwaters predicted by numerical wave flume Submerged breakwaters are one of the most fundamental structures to protect coastal areas from wave action. To ensure the stability of a whole structure, it is primarily important to determine the required mass of armor units accurately. This study aims to evaluate the armor block stability based on a flow field calculated by a numerical wave flume. The flow field was calculated by using a 2D VOF-type numerical wave flume. The wave force acting on an armor block was calculated using the Morison formula. Drag, inertia and lift coefficients for the Morison formula were determined by using an exact 3D VOF-type numerical model. The resultant stability of the armor block was judged from a comparison between the wave force and the stabilizing force originating from the mass of the armor block. An evaluation method for the critical condition of armor block stabilit...
Journal ArticleDOI
TL;DR: Theoretical analysis of the behavior of a model seabed subjected to water wave excitation is presented in this article, which is based on the classical soil mechanics, including the Biot type approach.
Abstract: Abstract Theoretical analysis of the behavior of a model seabed subjected to water wave excitation is presented. The experiments were performed in the wave flume at the Danish Technological University in Lyngby. Such experiments are unique in engineering sciences and therefore provide unique empirical data for testing various models of the seabed. A controversial explanation of the experiments is presented in the literature. The goal of this research was to study pore pressure changes caused by water waves and the subsequent liquefaction of the seabed. The authors of the present contribution offer their own theoretical explanation of the wave flume experiments and discuss errors found in the literature cited. The analysis is based on the classical soil mechanics, including the Biot type approach
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated the overtopping wave reduction coefficient of Rakuna IV block and its relationship with the Irribaren number xm-1,0 in a wave flume at Ha Noi Water Resources University.
Abstract: Run up, overtopping are the main reasons that damage and unstabilize the coastal and basin protective structures. So, overtopping wave is an inevitable load during coastal structures designing process, particularly at present very complicated real situation of global sea level rise and climate change. Based on the early researches, allowable mean overtopping wave discharges play an important roll in determining breakwaters' dimension such as top elevation, slope protective alternatives in the port side and so on. The more permissible average overtopping wave discharges, the lower breakwater top elevation needed. Moreover, the weight of armor blocks used on a seaside slope can be reduced. However, the port side slope needs to be properly protected against the impact of overtopping wave. Thus, researching the application of new armored unit blocks with high overtopping wave reduction capability that is corresponsive to typhoon-generated wave conditions is totally in need. Rakuna IV is one of the newly developed wave-dissipating blocks invented by Nikken Kogaku (Japan) in 2007, and the stability of this block for rubble mound breakwaters has been investigated under non-wave overtopping conditions by many researchers in Japan, Korea, China, and Vietnam. To be more exhaustive in the design of breakwaters with this kind of block, this study carried out experimental research on wave overtopping performance of RAKUNA-IV (overtopping reduction by roughness factor γr) in wave flume at Ha Noi Water Resources University. Based on the physical model tests' results, the author has determined the overtopping wave reduction coefficient γr of Rakuna IV block and its relationship with Irribaren number xm-1,0.
Journal ArticleDOI
TL;DR: In this paper, a wave flume was developed based on the non-periodic high-order spectral (HOS) method to analyze the effect of wave steepness and wavelength on the propagation of nonlinear waves.
Abstract: A numerical approach was performed to predict the propagation and transformation of nonlinear water waves. A numerical wave flume was developed based on the non-periodic high-order spectral (HOS) method. The flume was applied to analyze the effect of wave steepness and wavelength on the propagation of nonlinear waves. The results show that for waves of low steepness, the wave profile and the wave energy spectrum are stable, and that the propagation can be predicted by the linear wave theory. For waves of moderate steepness and steep waves, the effects associated with the interactions between waves in a wave group become significant and a train of initially sinusoidal waves may drastically change its form within a short distance from its original position.
Report SeriesDOI
12 May 2019
TL;DR: In this paper, an improved design method of shore parallel discontinuous submerged breakwaters with optimal geometry is presented, where the effect of breakwater openings on hydrodynamic conditions around the structures is experimentally and numerically investigated.
Abstract: An improved design method of shore parallel discontinuous submerged breakwaters with optimal geometry is presented. In particular, the effect of breakwater openings on hydrodynamic conditions around the structures is experimentally and numerically investigated. The challenge of this study is not only validating the experimental findings using numerical methods but also investigating further alternative forms and geometries which cannot be reproduced in the wave flume. This research concerns a submerged coastal structure made out of two shore-parallel rouble mound breakwaters with openings (channels) whose main objective is to limit wave-induced set-up by pumping out and generating transverse seaward flows. Our wave flume (Fig. 63.1), extended 31 m in cross-shore and 1.8 m in along-shore direction, is equipped with a piston type wavemaker and the sea-bed is represented by a 1/36 scale distorted movable bed model. The main experimental results concern the hydrodynamic conditions in the channels, where offshore-oriented currents are presented. The numerical modeling is performed using OpenFOAM software. After the validation of experimental findings, a second task consists in expanding the structure in along-shore direction. The main objective is to assess the bias committed by the wave flume configuration. Thus, the simulations are realized with identical bathymetry, but for models four and eight times wider than the original one and with either a finite or an infinite structure. The results show that the local three-dimensional flow always exists and is negligibly influenced by reflexions on the wave flume walls. The initial physical model can therefore be considered as the representation of an infinite structure.

Network Information
Related Topics (5)
Water flow
82.5K papers, 912.5K citations
76% related
Sediment
48.7K papers, 1.2M citations
74% related
Drag
43.8K papers, 769.2K citations
73% related
Sea ice
24.3K papers, 876.6K citations
73% related
Turbulence
112.1K papers, 2.7M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202284
202165
202069
201964
201859