scispace - formally typeset
Search or ask a question
Topic

Wave height

About: Wave height is a research topic. Over the lifetime, 5920 publications have been published within this topic receiving 100257 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, phase-averaged spectral models have been used to describe wave transformation over fringing reefs, including bottom-friction source term for tropical reefs, and compared with laboratory and field observations.

45 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of wave reflection and energy dissipation by breaking and by porous flow induced by a permeable submerged structure on second-order mean quantities such as mass flux, energy flux, radiation stress, and mean water level is analyzed.
Abstract: The influence of wave reflection and energy dissipation by breaking and by porous flow induced by a permeable submerged structure on second-order mean quantities such as mass flux, energy flux, radiation stress, and mean water level is analyzed. For this purpose, analytical expressions for those mean quantities in terms of the shape functions are obtained. The dependence of those quantities on the incident wave characteristics, structure geometry, and permeable material characteristics is modeled, extending the writers' previous work including wave breaking. Two models for regular waves are presented: a 2D model to be applied to submerged trapezoidal breakwaters and a 3D model for submerged permeable rectangular breakwaters. Both models are able to reproduce experimental wave height transformation as well as mean water level variations along the wave flume with reasonable accuracy. Results give useful information for engineering applications of wave height evolution and set-up and set-down evolution in th...

44 citations

Journal ArticleDOI
TL;DR: In this article, a coupled flow-vegetation interaction model capable of resolving the flow and motion of flexible vegetation with large deflections simultaneously on a hybrid Eulerian-Lagrangian grid is presented.

44 citations

Journal ArticleDOI
15 Aug 2013
TL;DR: In this paper, an unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period.
Abstract: An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2 m and mean periods of 8 s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19–20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east–west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2 m and maximum wave heights of 14 m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a 30-km grid, largely due to under-prediction of the mean wind speed and wave height with the coarser grid. The 30-km grid did not resolve the mountain gap wind jets, and thus predicted lower wave heights in the central Red Sea during the summer and along the northeast coast in the winter.

44 citations


Network Information
Related Topics (5)
Sea ice
24.3K papers, 876.6K citations
78% related
Sediment
48.7K papers, 1.2M citations
78% related
Wind speed
48.3K papers, 830.4K citations
77% related
Sea surface temperature
21.2K papers, 874.7K citations
77% related
Bay
35.4K papers, 576.5K citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023166
2022326
2021251
2020262
2019272
2018242