scispace - formally typeset
Search or ask a question
Topic

Wave height

About: Wave height is a research topic. Over the lifetime, 5920 publications have been published within this topic receiving 100257 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a strong positive power correlation between sediment wave height and spacing was observed: Δ s ǫ = 0.0692 λ 0.8020 (N Â = 935; r Â= 0.853).

61 citations

Journal ArticleDOI
TL;DR: The relationship between bed shear stress and water depth shows a dependence on fetch as mentioned in this paper, which is explained by the coupled effects of water depth, wave height, and wave period.

61 citations

Journal ArticleDOI
TL;DR: A mid-shore colonial algal turf community is described in this article, which is composed of a mixture of four species of eurythermal red algae, including Gelidium crinale (Turner) Lamouroux (Rhodophyceae: Gelidiales), Centroceras clavulatum (C. Agardh) Montagne, Polysiphonia denudata (Dillwyn) Kuetzing, and Bryocladia cuspidata (J.B. Adams (Mollusca: Pterio
Abstract: A mid-shore colonial algal turf community is described. Samples were analysed to determine if species composition, invertebrate epiphyte density, algal mat biomass, and the amount of sediment trapped among algal thalli differed with respect to substratum slope and wave height.Colonial algal turf was approximately 1–3 cm in height and predominantly composed of a mixture of four species of eurythermal red algae, including Gelidium crinale (Turner) Lamouroux (Rhodophyceae: Gelidiales), Centroceras clavulatum (C. Agardh) Montagne, Polysiphonia denudata (Dillwyn) Kuetzing, and Bryocladia cuspidata (J. Agardh) De Toni (Rhodophyceae: Ceramiales). More delicate algae and algal epiphytes were found at stations with lower mean wave height, while non-epiphytic coralline algae were found only at stations with higher mean wave height. Algal mat mass was significantly greater on horizontal slopes than on vertical slopes, but did not differ with respect to wave-height levels. Algal mats trapped significantly more sediment on horizontal slopes with lower mean wave height.Densities of the three most abundant invertebrate epiphytes appeared to be related to sediment deposition. Like sedimentation patterns, disparities in population densities on different substratum slopes increased with lower mean wave height. The highest densities of the amphipods Elasmopus rapax Costa and Hyale frequens Haswell (Crustacea: Peracarida) occurred on horizontal slopes at stations with significantly lower mean wave height. The highest densities of the tree oyster Isognomon bicolor C.B. Adams (Mollusca: Pterioida) were on vertical slopes at stations with significantly lower mean wave height. Barnacle epiphytes occurred in higher densities at stations receiving greater mean wave height, while dominant species of other crustaceans and molluscs had higher densities at stations with significantly lower mean wave height.

61 citations

Journal ArticleDOI
TL;DR: In this article, the SWAN model was used to estimate the expected sliding distances for the breakwaters at Shibushi Ports in Japan using a probabilistic design method, and the results showed that in the future the expected slide distances may become five times greater than at present, due to a combination of increases in sea level and wave height.
Abstract: Climate change is expected to lead to increases in both sea level and typhoon intensity, which could threaten the stability of breakwaters in the future. In this study, calculations using the SWAN model showed that a 10% potential increase in the future wind speed of typhoons resulting from the warming of surface sea temperatures can lead to a 21% increase in the significant wave heights generated by these winds. To understand the effect that this would have on breakwater stability, the expected sliding distances for the breakwaters at Shibushi Ports in Japan were estimated using a probabilistic design method. The results show that in the future the expected sliding distances may become five times greater than at present, due to a combination of increases in sea level and wave height.

60 citations

Journal ArticleDOI
TL;DR: In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites, and the number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m as mentioned in this paper.
Abstract: In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.

60 citations


Network Information
Related Topics (5)
Sea ice
24.3K papers, 876.6K citations
78% related
Sediment
48.7K papers, 1.2M citations
78% related
Wind speed
48.3K papers, 830.4K citations
77% related
Sea surface temperature
21.2K papers, 874.7K citations
77% related
Bay
35.4K papers, 576.5K citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023166
2022326
2021251
2020262
2019272
2018242