scispace - formally typeset
Search or ask a question
Topic

Wave power

About: Wave power is a research topic. Over the lifetime, 2671 publications have been published within this topic receiving 41439 citations. The topic is also known as: wind wave energy & sea wave energy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the impact of elongation of the plasma cross-section and toroidicity on the angular dependence of the EC radiation field, on the profile of the net EC wave power density lost from the plasma and on the total EC power loss for ITER-like plasma conditions.
Abstract: As it was recognized that local electron cyclotron (EC) wave power losses can be a competitive contribution to the 1D electron power balance for reactor-grade tokamak plasmas in regimes as anticipated for steady-state operation, a systematic effort is ongoing to improve the modelling capability for the radial profile of EC wave emission. This effort aims at generating a hierarchy of codes that cover the non-local behaviour of EC wave transport for inhomogeneous plasmas and in the presence of reflecting walls with increasingly improved accuracy and also provide sufficient computational efficiency for being usable in 1D transport studies. The recently developed code RAYTEC, which explicitly addresses the geometrical effects present in toroidal plasmas with arbitrary cross-section, is described and used to investigate the impact of elongation of the plasma cross-section and of toroidicity on the angular dependence of the EC radiation field, on the profile of the net EC wave power density lost from the plasma and on the total EC power loss for ITER-like plasma conditions. Furthermore, a comparison is made with the results of simpler models in use to describe both local and total EC power losses as well as with ones obtained from analytical formulae that are introduced on the basis of Trubnikov's formula for EC power emission.

14 citations

Journal ArticleDOI
TL;DR: In this article, the hydrodynamic efficiency of a cylindrical wave energy converter (WEC) of vertical symmetry axis and arranged in front of a reflecting orthogonal breakwater is explored.
Abstract: In the present study, the hydrodynamic efficiency of a cylindrical wave energy converter (WEC) of vertical symmetry axis and arranged in front of a reflecting orthogonal breakwater is explored. The idea is based on exploiting the anticipated amplification of the scattered and the reflected wave fields originating from the presence of the vertical walls, towards increasing the WEC’s wave power absorption due to the walls’ wave reflections. Two types of converters are examined, namely the heaving device and the oscillating water column (OWC) device, assuming linear potential theory. The associated diffraction-, motion-, and pressure-radiation problems are solved using axisymmetric eigenfunction expansions for the velocity potential around the WECs by properly accounting for the wave field’s modification due to the walls’ presence. To this end, a theoretical formulation dealing with the evaluation of the converter’s performance is presented accounting for the coupling between the WEC and the reflecting vertical walls. The results depict that the amount of the harvested wave power by the WEC in front of an orthogonal wall is amplified compared to the absorbed wave power by the same WEC in the open sea.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the reflection and refraction of MHD waves through an open magnetopause (rotational discontinuity) was studied and it was found that most of the incident wave energy can be transmitted through the open magnetopsause.

14 citations

Journal ArticleDOI
25 Dec 2019-Energies
TL;DR: In this article, the long-term variability of wave power at 20 locations in the Indian shelf seas from 1979 to 2018 is described using the European Centre for Medium-Range Weather Forecasts recently released ERA5 reanalysis hourly data.
Abstract: Ocean wave energy is one of the cleanest renewable energy sources around the globe, but wave energy varies widely from place to place and from time to time. The long-term variability of wave power at 20 locations in the Indian shelf seas from 1979 to 2018 is described here using the European Centre for Medium-Range Weather Forecasts recently released ERA5 reanalysis hourly data. The variability is calculated on a yearly and monthly basis for the locations based on the coefficient of variation. The annual average wave power varied from 2.3 (at location 16 in the western Bay of Bengal) to 11 kW/m (at location 2 in the northeastern Arabian Sea). Along the western shelf seas, the maximum value of wave power is during the southwest monsoon period and along the east coast, it is during the tropical cyclone period. The standard deviation in wave power is more than the mean value at locations along the northern shelf seas of India, indicating a large variability in wave power in an annual cycle. The west coast locations are shown to have a slightly higher increasing trend with an average of 0.024 kW/m per year, while the increasing trend in wave power of east coast locations is with an average of 0.015 kW/m per year. The study also examines the variation in wave power from deep to shallow water at 2 locations using the wave characteristics obtained from the numerical model SWAN. The electric power output from a few wave energy converters are calculated for all the locations and found that the southernmost locations have a steady and higher percentage of power production.

14 citations

Journal ArticleDOI
TL;DR: The ULF wave index as mentioned in this paper characterizes the level of the geomagnetic field variability in the frequency range 2-7 mHz and has been suggested to the space physics and geophysical community.
Abstract: A ULF wave index, characterizing the level of the geomagnetic field variability in the frequency range 2–7 mHz, has been suggested to the space physics and geophysical community. This global wave index is produced from all available arrays of magnetometers and isolated stations in the Northern hemisphere. A similar ULF wave index is calculated using magnetometer data from geostationary (GOES) and interplanetary (Wind, ACE) satellites. In this review we demonstrate that a wide range of space physics studies, such as the solar wind-ionosphere coupling, wave energy transport, substorm physics, relativistic electron energization, ring current formation, electrodynamics of the ionosphere and magnetosphere, search for electromagnetic precursors of earthquakes, etc., has benefited from the introduction of the provisional ULF wave index. Possible ways of the ULF index advancement and development are discussed. The permanently updating ULF-index database is freely available via the website ulf.gcras.ru for all interested researchers for further validation and statistical studies.

14 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
79% related
Wind power
99K papers, 1.5M citations
73% related
Reynolds number
68.4K papers, 1.6M citations
71% related
Boundary layer
64.9K papers, 1.4M citations
71% related
Vortex
72.3K papers, 1.3M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202349
2022117
2021111
2020142
2019137
2018138