scispace - formally typeset
Topic

Wavelength-division multiplexing

About: Wavelength-division multiplexing is a(n) research topic. Over the lifetime, 25059 publication(s) have been published within this topic receiving 332027 citation(s). The topic is also known as: WDM.


Papers
More filters
Book

[...]

01 Jan 1992
TL;DR: In this article, the authors present an overview of the main components of WDM lightwave communication systems, including the following: 1.1 Geometrical-Optics Description, 2.2 Wave Propagation, 3.3 Dispersion in Single-Mode Fibers, 4.4 Dispersion-Induced Limitations.
Abstract: Preface. 1 Introduction. 1.1 Historical Perspective. 1.2 Basic Concepts. 1.3 Optical Communication Systems. 1.4 Lightwave System Components. Problems. References. 2 Optical Fibers. 2.1 Geometrical-Optics Description. 2.2 Wave Propagation. 2.3 Dispersion in Single-Mode Fibers. 2.4 Dispersion-Induced Limitations. 2.5 Fiber Losses. 2.6 Nonlinear Optical Effects. 2.7 Fiber Design and Fabrication. Problems. References. 3 Optical Transmitters. 3.1 Semiconductor Laser Physics. 3.2 Single-Mode Semiconductor Lasers. 3.3 Laser Characteristics. 3.4 Optical Signal Generation. 3.5 Light-Emitting Diodes. 3.6 Transmitter Design. Problems. References. 4 Optical Receivers. 4.1 Basic Concepts. 4.2 Common Photodetectors. 4.3 Receiver Design. 4.4 Receiver Noise. 4.5 Coherent Detection. 4.6 Receiver Sensitivity. 4.7 Sensitivity Degradation. 4.8 Receiver Performance. Problems. References. 5 Lightwave Systems. 5.1 System Architectures. 5.2 Design Guidelines. 5.3 Long-Haul Systems. 5.4 Sources of Power Penalty. 5.5 Forward Error Correction. 5.6 Computer-Aided Design. Problems. References. 6 Multichannel Systems. 6.1 WDM Lightwave Systems. 6.2 WDM Components. 6.3 System Performance Issues. 6.4 Time-Division Multiplexing. 6.5 Subcarrier Multiplexing. 6.6 Code-Division Multiplexing. Problems. References. 7 Loss Management. 7.1 Compensation of Fiber Losses. 7.2 Erbium-Doped Fiber Amplifiers. 7.3 Raman Amplifiers. 7.4 Optical Signal-To-Noise Ratio. 7.5 Electrical Signal-To-Noise Ratio. 7.6 Receiver Sensitivity and Q Factor. 7.7 Role of Dispersive and Nonlinear Effects. 7.8 Periodically Amplified Lightwave Systems. Problems. References. 8 Dispersion Management. 8.1 Dispersion Problem and Its Solution. 8.2 Dispersion-Compensating Fibers. 8.3 Fiber Bragg Gratings. 8.4 Dispersion-Equalizing Filters. 8.5 Optical Phase Conjugation. 8.6 Channels at High Bit Rates. 8.7 Electronic Dispersion Compensation. Problems. References. 9 Control of Nonlinear Effects. 9.1 Impact of Fiber Nonlinearity. 9.2 Solitons in Optical Fibers. 9.3 Dispersion-Managed Solitons. 9.4 Pseudo-linear Lightwave Systems. 9.5 Control of Intrachannel Nonlinear Effects. Problems. References. 10 Advanced Lightwave Systems. 10.1 Advanced Modulation Formats. 10.2 Demodulation Schemes. 10.3 Shot Noise and Bit-Error Rate. 10.4 Sensitivity Degradation Mechanisms. 10.5 Impact of Nonlinear Effects. 10.6 Recent Progress. 10.7 Ultimate Channel Capacity. Problems. References. 11 Optical Signal Processing. 11.1 Nonlinear Techniques and Devices. 11.2 All-Optical Flip-Flops. 11.3 Wavelength Converters. 11.4 Ultrafast Optical Switching. 11.5 Optical Regenerators. Problems. References. A System of Units. B Acronyms. C General Formula for Pulse Broadening. D Software Package.

4,090 citations

Journal Article

[...]

TL;DR: The general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability ofOBS protocols to IP over WDM, and the performance of JET-based OBS Protocols is evaluated.
Abstract: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future generation Optical Internet. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS combines the best of optical circuit-switching and packet/cell switching. In this paper, the general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability of OBS protocols to IP over WDM. Specific issues such as the use of fiber delay-lines (FDLs) for accommodating processing delay and/or resolving conflicts are also discussed. In addition, the performance of JET-based OBS protocols which use an offset time along with delayed reservation to achieve efficient utilization of both bandwidth and FDLs as well as to support priority-based routing is evaluated.

1,995 citations

Journal ArticleDOI

[...]

10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,843 citations

Book

[...]

01 Jan 1983
TL;DR: The concept of WDM combined with optical amplifiers has resulted in communication links that allow rapid communications between users in countries all over the world as discussed by the authors, which is known as wavelength division multiplexing (WDM).
Abstract: Optical fibers are used extensively for data transmission systems because of their dielectric nature and their large information-carrying capacity. Network architectures using multiple wavelength channels per optical fiber are utilized in local, metropolitan, or wide-area applications to connect thousands of users having a wide range of transmission capacities and speeds. A powerful aspect of an optical communication link is that many different wavelengths can be sent along a fiber simultaneously in the 1300-to-1600- nm spectrum. The technology of combining a number of wavelengths onto the same fiber is known as wavelength division multiplexing (WDM). The concept of WDM used in conjunction with optical amplifiers has resulted in communication links that allow rapid communications between users in countries all over the world. Keywords: optical fibers; attenuation; photonic systems; WDM; optical amplifiers; dispersion; nonlinear effects

1,445 citations

Journal ArticleDOI

[...]

TL;DR: Recent progress in multiwavelength networks are reviewed, some of the limitations which affect the performance of such networks are discussed, and examples of several network and switch proposals based on these ideas are presented.
Abstract: The very broad bandwidth of low-loss optical transmission in a single-mode fiber and the recent improvements in single-frequency tunable lasers have stimulated significant advances in dense wavelength division multiplexed optical networks This technology, including wavelength-sensitive optical switching and routing elements and passive optical elements, has made it possible to consider the use of wavelength as another dimension, in addition to time and space, in network and switch design The independence of optical signals at different wavelengths makes this a natural choice for multiple-access networks, for applications which benefit from shared transmission media, and for networks in which very large throughputs are required Recent progress in multiwavelength networks are reviewed, some of the limitations which affect the performance of such networks are discussed, and examples of several network and switch proposals based on these ideas are presented Discussed also are critical technologies that are essential to progress in this field >

1,341 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Semiconductor laser theory
38.5K papers, 713.7K citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Orthogonal frequency-division multiplexing
50.5K papers, 682.6K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20227
2021476
2020626
2019693
2018725
2017768