scispace - formally typeset
Search or ask a question
Topic

Wavelength-division multiplexing

About: Wavelength-division multiplexing is a research topic. Over the lifetime, 25059 publications have been published within this topic receiving 332027 citations. The topic is also known as: WDM.


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes several techniques for comb-based superchannel receivers that enables the phase coherence between the lines to be used to simplify or increase the performance of the digital carrier recovery in wavelength-division multiplexed fiber optic communication systems.
Abstract: We review the use of optical frequency combs in wavelength-division multiplexed (WDM) fiber optic communication systems. In particular, we focus on the unique possibilities that are opened up by the stability of the comb-line spacing and the phase coherence between the lines. We give an overview of different techniques for the generation of optical frequency combs and review their use in WDM systems. We discuss the benefits of the stable line spacing of frequency combs for creating densely-packed optical superchannels with high spectral efficiency. Additionally, we discuss practical considerations when implementing frequency-comb-based transmitters. Furthermore, we describe several techniques for comb-based superchannel receivers that enables the phase coherence between the lines to be used to simplify or increase the performance of the digital carrier recovery. The first set of receiver techniques is based on comb-regeneration from optical pilot tones, enabling low-overhead self-homodyne detection. The second set of techniques takes advantage of the phase coherence by sharing phase information between the channels through joint digital signal processing (DSP) schemes. This enables a lower DSP complexity or a higher phase-noise tolerance.

69 citations

Journal ArticleDOI
TL;DR: It is found that Technique-C is the best in the quality of the generated mm-wave, especially when poor optical filtering is used, and develops a theory for calculation of Q-factor using the three modulation techniques.
Abstract: We comprehensively investigate three modulation techniques for the generation of millimeter-wave (mm-wave) using optical frequency quadrupling with a dual–electrode Mach-Zehnder modulator (MZM), i.e. Technique-A, Technique-B and Technique-C. For Technique-A, an RF signal drives the two electrodes of the MZM with maximum transmission bias, and this MZM is used for both the mm-wave generation and signal modulation. Technique-B is the same as Technique-A, but 180° phase shift between the two electrodes is applied. Technique-C is the same as Technique-B, but the MZM is only used for the mm-wave generation without signal modulation. It is found that Technique-B and Technique-C are better for frequency quadrupling than frequency doubling, tripling and sextupling. Both theoretical analysis and simulation show that the generated mm-wave suffers from constructive/destructive interaction due to fiber chromatic dispersion in Technique-A. However, the generated mm-wave is almost robust to fiber chromatic dispersion in Technique-B and Technique- C. It is found that Technique-C is the best in the quality of the generated mm-wave, especially when poor optical filtering is used. In addition, we develop a theory for calculation of Q-factor in an mm-wave over fiber system using the three modulation techniques for mm-wave generation. We consider an RF at 7.5 GHz and obtain an mm-wave at 30 GHz as an example, i.e. a frequency quadrupler. We evaluate the generation and distribution in terms of system Q-factor. The impact of RF modulation index, chromatic dispersion, MZM extinction ratio and optical filtering on Q-factor are investigated.

69 citations

Journal ArticleDOI
TL;DR: Three regular meshed topologies are compared in light of their possible use for the implementation of large all-optical wavelength-routing communication networks (or interconnection systems) and the K-dimensional bidirectional square lattice, the twin shuffle, and the de Bruijn graph are considered.
Abstract: Three regular meshed topologies are compared in light of their possible use for the implementation of large all-optical wavelength-routing communication networks (or interconnection systems). These systems provide all source-destination pairs with end-to-end transparent channels that are identified through a wavelength and a physical path. The considered topologies are the K-dimensional bidirectional square lattice, the twin shuffle, and the de Bruijn graph. The comparison is based on the maximum and average distance between source and destination (number of traversed nodes), on the degree of connectivity for each node (number of input and output fibers), and on the minimum number of wavelengths in the WDM comb necessary to discriminate all source-destination pairs. >

68 citations

Journal ArticleDOI
01 Jul 2017-Optik
TL;DR: In this paper, a demultiplexer based on photonic crystals was proposed for dense wavelength division multiplexing transmission systems, where the main cavity was responsible for selecting the wavelength.

68 citations

Journal ArticleDOI
TL;DR: This research shows that OCDMA implementation complexity can be avoided by using a guard time in the codes and an optical hard limiter in the receiver, and that 2-D wavelength/time codes have better SE than one-dimensional CDMA/WDM combinations.
Abstract: Optical code-division multiple access (OCDMA) is an interesting subject of research because of its potential to support asynchronous, bursty communications. OCDMA has been investigated for local area networks, access networks, and, more recently, as a packet label for emerging networks. Two-dimensional (2-D) OCDMA codes are preferred in current research because of the flexibility of designing the codes and their higher cardinality and spectral efficiency (SE) compared with direct sequence codes based on on-off keying and intensity modulation/direct detection, and because they lend themselves to being implemented with devices developed for wavelength-division-multiplexed (WDM) transmission (the 2-D codes typically combine wavelength and time as the two dimensions of the codes). This paper shows rigorously that 2-D wavelength/time codes have better SE than one-dimensional (1-D) CDMA/WDM combinations (of the same cardinality). Then, the paper describes a specific set of wavelength/time (W/T) codes and their implementation. These 2-D codes are high performance because they simultaneously have high cardinality (/spl Gt/10), per-user high bandwidth (>1 Gb/s), and high SE (>0.10 b/s/Hz). The physical implementation of these W/T codes is described and their performance evaluated by system simulations and measurements on an OCDMA technology demonstrator. This research shows that OCDMA implementation complexity (e.g., incorporating double hard-limiting and interference estimation) can be avoided by using a guard time in the codes and an optical hard limiter in the receiver.

68 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Semiconductor laser theory
38.5K papers, 713.7K citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Orthogonal frequency-division multiplexing
50.5K papers, 682.6K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022689
2021479
2020626
2019693
2018725