scispace - formally typeset
Search or ask a question
Topic

Wavelength-division multiplexing

About: Wavelength-division multiplexing is a research topic. Over the lifetime, 25059 publications have been published within this topic receiving 332027 citations. The topic is also known as: WDM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, optical phase conjugation (OPC) is used for compensation of chromatic dispersion and nonlinear impairments in WDM 40-Gb/s long-haul transmission.
Abstract: In this paper, we review the recent progress in transmission experiments by employing optical phase conjugation (OPC) for the compensation of chromatic dispersion and nonlinear impairments. OPC is realized with difference frequency generation (DFG) in a periodically poled lithium-niobate (PPLN) waveguide, for transparent wavelength-division multiplexed (WDM) operation with high conversion efficiency. We discuss extensively the principle behind optical phase conjugation and the realization of a polarization independent OPC subsystem. Using OPC for chromatic dispersion compensation WDM 40-Gb/s long-haul transmission is described. As well, transmission employing both mixed data rates and mixed modulation formats is discussed. No significant nonlinear impairments are observed from the nonperiodic dispersion map used in these experiments. The compensation of intrachannel nonlinear impairments by OPC is described for WDM carrier-suppressed return-to-zero (CSRZ) transmission. In this experiment, a 50% increase in transmission reach is obtained by adding an OPC unit to a transmission line using dispersion compensating fiber (DCF) for dispersion compensation. Furthermore, the compensation of impairments due to nonlinear phase noise is reviewed. An in-depth analysis is conducted on what performance improvement is to be expected for various OPC configurations and a proof-of-principle experiment is described showing over 4-dB improvement in Q-factor due to compensation of nonlinear impairments resulting from nonlinear phase noise. Finally, an ultralong-haul WDM transmission of 22times20-Gb/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) is discussed showing that OPC can compensate for chromatic dispersion, as well as self-phase modulation (SPM) induced nonlinear impairments, such as nonlinear phase noise. Compared to a "conventional" transmission link using DCF for dispersion compensation, a 44% increase in transmission reach is obtained when OPC is employed. In this experiment, we show the feasibility of using only one polarization-independent PPLN subsystem to compensate for an accumulated chromatic dispersion of over 160 000 ps/nm

156 citations

Patent
Victor Mizrahi1
14 Jun 1996
TL;DR: In this article, the authors proposed a bidirectional WDM optical communication system, which includes two sets of optical transmitters for respectively creating a set of west-east optical channels and counter-propagating east-west optical channels.
Abstract: The present invention provides a bidirectional WDM optical communication system with bidirectional optical amplifiers for optically amplifying two counter-propagating WDM optical signals. The bidirectional system includes two sets of optical transmitters for respectively creating a set of west-east optical channels and a set of counter-propagating east-west optical channels. The respective channel sets are multiplexed by optical combiners and output to an optical transmission path. A bidirectional optical amplifier positioned in the optical transmission path amplifies the west-east and east-west WDM signals. In an exemplary embodiment, the amplifier includes at least two optical circulators with at least first, second, and third circulating ports. A gain block interconnects the circulators for optically amplifying the WDM signals. Bragg gratings configured to reflect either the west-east or the east-west channel band are positioned in optical paths which optically communicate with the optical circulators. The bidirectional WDM optical system further includes two receiving systems for demultiplexing the WDM signals and routing the individual optical channels to their respective receivers.

156 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first demonstration of all-optical label swapping with wavelength conversion and subcarrier multiplexed addressing for WDR IP, which utilizes a module which is based on cascaded semiconductor optical amplifier wavelength converters that perform the functions of label removal, label rewriting, payload 2R regeneration and double sideband sub-carrier label regeneration.
Abstract: We report the first demonstration of all-optical label swapping with wavelength conversion and subcarrier multiplexed addressing for WDR IP. This demonstration utilizes a module which is based on cascaded semiconductor optical amplifier wavelength converters that perform the functions of label removal, label rewriting, payload 2R regeneration and double sideband subcarrier label regeneration. Replacement of double-sideband subcarrier labels on a hop-by-hop basis addresses the problem of dispersion induced fading in a multihop fiber network. A direct detection subcarrier receiver is used to recover the label. Switching over four wavelengths covering 16 nn is demonstrated with noninverting wavelength conversion of 2.5-Gb/s payloads and burst mode recovery of 10-Mb/s labels. BER measurements of better than 10/sup -9/ for the wavelength-converted payload and rewritten labels at all wavelengths are presented.

156 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of continuous variable quantum key distribution (CV-QKD) in dense-wavelength-division multiplexing networks (DWDM) was demonstrated experimentally.
Abstract: We demonstrate experimentally the feasibility of continuous variable quantum key distribution (CV-QKD) in dense-wavelength-division multiplexing networks (DWDM), where QKD will typically have to coexist with several co-propagating (forward or backward) C-band classical channels whose launch power is around 0 dBm. We have conducted experimental tests of the coexistence of CV-QKD multiplexed with an intense classical channel, for different input powers and different DWDM wavelengths. Over a 25 km fiber, a CV-QKD operated over the 1530.12 nm channel can tolerate the noise arising from up to 11.5 dBm classical channel at 1550.12 nm in the forward direction (9.7 dBm in backward). A positive key rate (0.49 kbits s−1) can be obtained at 75 km with classical channel power of respectively −3 and −9 dBm in forward and backward. Based on these measurements, we have also simulated the excess noise and optimized channel allocation for the integration of CV-QKD in some access networks. We have, for example, shown that CV-QKD could coexist with five pairs of channels (with nominal input powers: 2 dBm forward and 1 dBm backward) over a 25 km WDM-PON network. The obtained results demonstrate the outstanding capacity of CV-QKD to coexist with classical signals of realistic intensity in optical networks.

155 citations

Proceedings ArticleDOI
18 Aug 2010
TL;DR: The growing need for optical interconnect bandwidth in data center networks, and the opportunities and challenges for wavelength division multiplexing (WDM) to sustain the “last 2km” bandwidth growth inside data Center networks are reviewed.
Abstract: We review the growing need for optical interconnect bandwidth in data center networks, and the opportunities and challenges for wavelength division multiplexing (WDM) to sustain the “last 2km” bandwidth growth inside data center networks.

155 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Semiconductor laser theory
38.5K papers, 713.7K citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Orthogonal frequency-division multiplexing
50.5K papers, 682.6K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022689
2021479
2020626
2019693
2018725