scispace - formally typeset
Search or ask a question
Topic

Wavelength-division multiplexing

About: Wavelength-division multiplexing is a research topic. Over the lifetime, 25059 publications have been published within this topic receiving 332027 citations. The topic is also known as: WDM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two schemes for wavelength conversion based on the cascading of two successive second order processes in a quasi-phase-matched lithium niobate channel waveguide were investigated.
Abstract: We investigate two schemes for wavelength conversion based on the cascading of two successive second order processes in a quasi-phase-matched lithium niobate channel waveguide. Efficient conversion over the full erbium amplifier bandwidth is possible with a single multi-hundred milliwatt pump laser operating around 1.55 μm.

117 citations

Journal ArticleDOI
TL;DR: This paper reviews recent advances in the generation, detection and transmission of orthogonal-frequency-division-multiplexing (OFDM) based superchannels, enabled by efficient and powerful digital signal processors.
Abstract: This paper reviews recent advances in the generation, detection and transmission of orthogonal-frequency-division-multiplexing (OFDM) based superchannels, enabled by efficient and powerful digital signal processors. The use of OFDM to form a superchannel can be (1) at the modulation stage by naturally realizing a square-like signal spectral shape to allow close packing of multiple modulated signals, and/or (2) at the optical multiplexing stage by seamlessly multiplexing these modulated signals. This paper reviews recent advances in this field. Several OFDM-based superchannel architectures are described and compared.

117 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the tradeoff in optical slice linewidth between signal-to-excess optical noise ratio and dispersion penalty in spectrum-sliced WDM systems and determine the channel slicewidth that minimizes transmission penalty.
Abstract: We simulate transmission of a spectrum-sliced WDM channel operating at high bit rates (e.g., 622 to 2488 Mb/s). We calculate the bit error rate using the non-Gaussian statistics of thermal light sources that are commonly used in spectrum slicing and account for the effects of fiber dispersion. We evaluate the tradeoff in optical slice linewidth between signal-to-excess optical noise ratio and dispersion penalty in spectrum-sliced WDM systems, and determine the channel slicewidth that minimizes transmission penalty for a given link length and bit rate. We compare our simulations against the measured performance of a 1244 Mb/s channel over 20 km of fiber. The results in this paper provide useful information for the design of spectrum-sliced WDM networks.

116 citations

Journal ArticleDOI
TL;DR: A new optimization method is proposed, which integrates routing and wavelength assignment in optimization of wavelengths, and two optimization algorithms are also proposed in minimizing the number of wavelengths.
Abstract: This paper discusses quality-of-service (QoS) multicast in wavelength-division multiplexing (WDM) networks. Given a set of QoS multicast requests, we are to find a set of cost suboptimal QoS routing trees and assign wavelengths to them. The objective is to minimize the number of wavelengths in the system. This is a challenging issue. It involves not only optimal QoS multicast routing, but also optimal wavelength assignment. Existing methods consider channel setup in WDM networks in two separate steps: routing and wavelength assignment, which has limited power in minimizing the number of wavelengths. In this paper, we propose a new optimization method, which integrates routing and wavelength assignment in optimization of wavelengths. Two optimization algorithms are also proposed in minimizing the number of wavelengths. One algorithm minimizes the number of wavelengths through reducing the maximal link load in the system; while the other does it by trying to free out the least used wavelengths. Simulation results demonstrate that the proposed algorithms can produce suboptimal QoS routing trees and substantially save the number of wavelengths.

116 citations

Journal ArticleDOI
TL;DR: Novel OP accommodation design algorithms that can heuristically establish wavelength paths or virtual wavelength paths (VWPs) in the network, where each link is composed of multiple fibers are proposed.
Abstract: The optical path (OP) technology, which employs both wavelength-division multiplexing and wavelength routing, will be the key to enhanced network integrity and an ubiquitous broadband integrated services digital network (B-ISDN) in the future. To construct the OP network, path accommodation design that can solve simultaneously the problems of path routing and wavelength assignment must be established. Since optical wavelengths are scarce resources, even with state-of-the-art technologies, the available number of wavelengths that can be multiplexed into a fiber is restricted to a relatively small number. This entails space division multiplexing with multiple fibers in the link in order to accommodate the large number of paths within a link. This paper proposes novel OP accommodation design algorithms that can heuristically establish wavelength paths (WPs) or virtual wavelength paths (VWPs) in the network, where each link is composed of multiple fibers. These algorithms minimize the average number of fibers (in other words, cross-connect ports) handled at the WP/VWP cross-connect nodes and enable us to obtain the required OP cross-connect (OPXC) system scale at each node in WP/VWP networks. Algorithms that consider failure restoration are also proposed. Some WP/VWP accommodation designs over a polygrid network are simulated using the proposed algorithms. The difference between the WP and VWP schemes in terms of the required OPXC system scale with and without considering failure restoration is quantitatively evaluated for the first time.

116 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Semiconductor laser theory
38.5K papers, 713.7K citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Orthogonal frequency-division multiplexing
50.5K papers, 682.6K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022689
2021479
2020626
2019693
2018725