scispace - formally typeset
Search or ask a question
Topic

Wavelength-division multiplexing

About: Wavelength-division multiplexing is a research topic. Over the lifetime, 25059 publications have been published within this topic receiving 332027 citations. The topic is also known as: WDM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an octave-spanning coherent supercontinuum was generated in a silicon waveguide covering the spectral region from the near-to short-wave-infrared, and the generated signal spans the wavelength range from the edge of the silicon transmission window, approximately 1.06 to beyond 2.4
Abstract: Efficient complementary metal-oxide semiconductor-based nonlinear optical devices in the near-infrared are in strong demand. Due to two-photon absorption in silicon, however, much nonlinear research is shifting towards unconventional photonics platforms. In this work, we demonstrate the generation of an octave-spanning coherent supercontinuum in a silicon waveguide covering the spectral region from the near- to shortwave-infrared. With input pulses of 18 pJ in energy, the generated signal spans the wavelength range from the edge of the silicon transmission window, approximately 1.06 to beyond 2.4 μm, with a −20 dB bandwidth covering 1.124–2.4 μm. An octave-spanning supercontinuum was also observed at the energy levels as low as 4 pJ (−35 dB bandwidth). We also measured the coherence over an octave, obtaining , in good agreement with the simulations. In addition, we demonstrate optimization of the third-order dispersion of the waveguide to strengthen the dispersive wave and discuss the advantage of having a soliton at the long wavelength edge of an octave-spanning signal for nonlinear applications. This research paves the way for applications, such as chip-scale precision spectroscopy, optical coherence tomography, optical frequency metrology, frequency synthesis and wide-band wavelength division multiplexing in the telecom window. A silicon-based source that generates a wide spectrum of light, spanning the near-infrared transparency window of silicon, has been made. Supercontinuum generation involves using short, high-power pulses to generate broad continuous spectra by propagating them through nonlinear media. Supercontinuum sources are needed for applications in spectroscopy and optical coherence tomography. Silicon is an attractive medium since it is compatible with standard semiconductor fabrication processes but it suffers from losses due to nonlinear processes such as two-photon absorption. Now, Neetesh Singh of Massachusetts Institute of Technology in the USA and co-workers have realized a fully coherent supercontinuum generation in a silicon waveguide over a full octave that spans the near to shortwave infrared window. The researchers envision their source being used in applications such as chip-scale precision spectroscopy, optical frequency metrology and optical communications.

113 citations

Journal ArticleDOI
TL;DR: A new scheme for realization of adiabatic mode add drop with a predefined coupling profile is proposed, and it is demonstrated by employing a linearly decreasing coupling coefficient along the propagation length.
Abstract: Multimode multiplexing can potentially replace WDM for implementing multichannel short reach interconnects. Multiple optical modes can thus be exploited as the channels for transferring optical data, where each mode represents an independent data channel. The basic building block of the system is a Mode Add/Drop which can be implemented based on adiabatic power transfer. We propose a new scheme for realization of such adiabatic mode add drop with a predefined coupling profile, and demonstrate it by employing a linearly decreasing coupling coefficient along the propagation length. Realization using Silicon-On-Insulator (SOI) platform is discussed - which offers the possibility of direct integration of the optoelectronic circuitry with the Si processor.

112 citations

Book
01 Dec 2002
TL;DR: DWDM Network Designs and Engineering Solutions shows you how to take advantage of the new technology to satisfy your network's bandwidth needs and bridges the gap between physical layer and network layer technologies and helps create solutions that build higher capacity and more resilient networks.
Abstract: A comprehensive book on DWDM network design and implementation solutionsDesign Software Included Study various optical communication principles as well as communication methodologies in an optical fiber Design and evaluate optical components in a DWDM network Learn about the effects of noise in signal propagation, especially from OSNR and BER perspectives Design optical amplifier-based links Learn how to design optical links based on power budget Design optical links based on OSNR Design a real DWDM network with impairment due to OSNR, dispersion, and gain tilt Classify and design DWDM networks based on size and performance Understand and design nodal architectures for different classification of DWDM networks Comprehend different protocols for transport of data over the DWDM layer Learn how to test and measure different parameters in DWDM networks and optical systemsThe demand for Internet bandwidth grows as new applications, new technologies, and increased reliance on the Internet continue to rise. Dense wavelength division multiplexing (DWDM) is one technology that allows networks to gain significant amounts of bandwidth to handle this growing need. DWDM Network Designs and Engineering Solutions shows you how to take advantage of the new technology to satisfy your network's bandwidth needs. It begins by providing an understanding of DWDM technology and then goes on to teach the design, implementation, and maintenance of DWDM in a network. You will gain an understanding of how to analyze designs prior to installation to measure the impact that the technology will have on your bandwidth and network efficiency. This book bridges the gap between physical layer and network layer technologies and helps create solutions that build higher capacity and more resilient networks.Companion CD-ROM The companion CD-ROM contains a complimentary 30-day demo from VPIphotonics™ for VPItransmissionMaker™, the leading design and simulation tool for photonic components, subsystems, and DWDM transmission systems. VPItransmissionMaker contains 200 standard demos, including demos from Chapter 10, that show how to simulate and characterize devices, amplifiers, and systems.

112 citations

Journal ArticleDOI
TL;DR: This work reports the first compact silicon CMOS 1x4 tunable multiplexer/ demultiplexer using cascaded silicon photonic ring-resonator based add/drop filters with a radius of 12 microm, and integrated doped-resistor thermal tuners.
Abstract: We report the first compact silicon CMOS 1x4 tunable multiplexer/ demultiplexer using cascaded silicon photonic ring-resonator based add/drop filters with a radius of 12 microm, and integrated doped-resistor thermal tuners. We measured an insertion loss of less than 1 dB, a channel isolation of better than 16 dB for a channel spacing of 200 GHz, and a uniform 3 dB pass band larger than 0.4 nm across all four channels. We demonstrated accurate channel alignment to WDM ITU grid wavelengths using integrated silicon heaters with a tuning efficiency of 90 pm/mW. Using this device in a 10 Gbps data link, we observed a low power penalty of 0.6 dB.

112 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Semiconductor laser theory
38.5K papers, 713.7K citations
90% related
Photonics
37.9K papers, 797.9K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
86% related
Orthogonal frequency-division multiplexing
50.5K papers, 682.6K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022689
2021479
2020626
2019693
2018725