scispace - formally typeset
Search or ask a question
Topic

Web colors

About: Web colors is a research topic. Over the lifetime, 499 publications have been published within this topic receiving 11240 citations. The topic is also known as: safe colors & Cascading Style Sheets/Color.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results show that colorNames learned from real-world images significantly outperform color names learned from labeled color chips for both image retrieval and image annotation.
Abstract: Color names are required in real-world applications such as image retrieval and image annotation. Traditionally, they are learned from a collection of labeled color chips. These color chips are labeled with color names within a well-defined experimental setup by human test subjects. However, naming colors in real-world images differs significantly from this experimental setting. In this paper, we investigate how color names learned from color chips compare to color names learned from real-world images. To avoid hand labeling real-world images with color names, we use Google image to collect a data set. Due to the limitations of Google image, this data set contains a substantial quantity of wrongly labeled data. We propose several variants of the PLSA model to learn color names from this noisy data. Experimental results show that color names learned from real-world images significantly outperform color names learned from labeled color chips for both image retrieval and image annotation.

752 citations

Book ChapterDOI
06 Sep 2014
TL;DR: This paper proposes a novel salient color names based color descriptor (SCNCD) to describe colors that outperforms the state-of-the-art performance (without user’s feedback optimization) on two challenging datasets (VIPeR and PRID 450S).
Abstract: Color naming, which relates colors with color names, can help people with a semantic analysis of images in many computer vision applications. In this paper, we propose a novel salient color names based color descriptor (SCNCD) to describe colors. SCNCD utilizes salient color names to guarantee that a higher probability will be assigned to the color name which is nearer to the color. Based on SCNCD, color distributions over color names in different color spaces are then obtained and fused to generate a feature representation. Moreover, the effect of background information is employed and analyzed for person re-identification. With a simple metric learning method, the proposed approach outperforms the state-of-the-art performance (without user’s feedback optimization) on two challenging datasets (VIPeR and PRID 450S). More importantly, the proposed feature can be obtained very fast if we compute SCNCD of each color in advance.

502 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: In this paper, the authors present a method that enhances the harmony among the colors of a given photograph or of a general image, while remaining faithful, as much as possible, to the original colors.
Abstract: Harmonic colors are sets of colors that are aesthetically pleasing in terms of human visual perception. In this paper, we present a method that enhances the harmony among the colors of a given photograph or of a general image, while remaining faithful, as much as possible, to the original colors. Given a color image, our method finds the best harmonic scheme for the image colors. It then allows a graceful shifting of hue values so as to fit the harmonic scheme while considering spatial coherence among colors of neighboring pixels using an optimization technique. The results demonstrate that our method is capable of automatically enhancing the color "look-and-feel" of an ordinary image. In particular, we show the results of harmonizing the background image to accommodate the colors of a foreground image, or the foreground with respect to the background, in a cut-and-paste setting. Our color harmonization technique proves to be useful in adjusting the colors of an image composed of several parts taken from different sources.

373 citations

Patent
14 Jun 2006
TL;DR: In this paper, the authors propose a data structure for controlling color reproduction of input color image data representing one or more pages or page constituents in a network having nodes (or sites), where each one of the nodes comprises at least one rendering device.
Abstract: The system provides for controlling color reproduction of input color image data representing one or more pages or page constituents in a network having nodes (or sites). Each one of the nodes comprises at least one rendering device. The system distributes the input color image data from one of the nodes to other nodes, and provides a data structure (virtual proof) in the network. This data structure has components shared by the nodes and other components present only at each node. Next, the system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The information is then stored in the data structure in different ones of the shared and other components. Means are provided in the system for transforming at each node the input color image data into output color image data for the rendering device of the node responsive to the information in the data structure. The rendering device of each node renders a color reproduction of the page constituents responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices. The system further has means for verifying at each node that the information for the rendering device of the node properly transformed the input color image data into the output color image data, and means for revising the information stored in the data structure at the node responsive to results of the verifying means. Shared components of the data structure may also store color preferences selected by a user. The information producing means of the system may further operate responsive to both the color calibration data and the color preferences. The rendering devices in the system can provide color reproductions having three or four colorants, and may provide more than four output colors (color inks).

345 citations

Patent
Giordano B. Beretta1
11 Dec 1991
TL;DR: In this paper, a graphical user interface provides a graphical representation of a color space in a colour space window on the user's display and draws each color in the palette in its current location in the color space.
Abstract: A graphical user interface provides for interactively modifying, on the user's display, the appearance of a palette of colors on one or more hardcopy output devices. The interface provides a graphical representation of a color space in a color space window on the user's display and draws each color in the palette in its current location in the color space, thereby showing the relationship of each color in the palette with other colors in the palette. The interface stores all color representations as device independent color specifications. The user interface stores a plurality of colorimetrically measured colors representing the gamut of one or more target hardcopy output devices, and displays the boundaries of a selected device gamut in the color space. The user manually controls the appearance of a color on an output printer device by moving a color from a current location outside the target gamut to a destination location inside the gamut. The user may also edit the color's lightness signal. A gamut clipping process ensures that the modified color is producible in the target gamut. When the user moves a color from inside a displayed target gamut to outside the gamut, a gamut constraining process prevents the color from being moved beyond the boundaries of the gamut. The user may flexibly and conveniently display and edit the palette of colors in any of several color spaces available, one of which is the uniform CIELAB color space. Modifications to palette colors are stored for future use.

332 citations


Network Information
Related Topics (5)
Pixel
136.5K papers, 1.5M citations
70% related
Image processing
229.9K papers, 3.5M citations
70% related
Display device
146.2K papers, 1M citations
68% related
Facial recognition system
38.7K papers, 883.4K citations
68% related
Feature (computer vision)
128.2K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20191
20183
20176
201616
201517
201418