scispace - formally typeset
Search or ask a question
Topic

Wet oxidation

About: Wet oxidation is a research topic. Over the lifetime, 3094 publications have been published within this topic receiving 61536 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared three methods of lignin hydrothermal conversion, including their process parameters, possible conversion routes, catalysts, application of products, and effects of hot-compressed organic solvent-water mixture solution on conversion of Lignin.
Abstract: Lignin is a carbon-rich renewable source owning aromatic structure units, which is an important constituent in biomass. Hydrothermal conversion of lignin is widely studied as a promising method to produce not only bioenergy but also value-added useful chemicals. Fuel gas, aromatic aldehydes and phenolic products can be obtained from lignin hydrothermal gasification, wet oxidation and hydrothermal liquefaction, respectively. This article discusses and compares the three methods of lignin hydrothermal conversion, including their process parameters, possible conversion routes, catalysts, application of products. Effects of hot-compressed organic solvent–water mixture solution on conversion of lignin and effects of lignin in biomass hydrothermal conversion are commented. Wet oxidation of lignin is an efficient mean of recovering value-added aromatic aldehydes, especially vanillin. Hydrothermal liquefaction of lignin is a promising way of recovering phenolics-rich bio-oils. Both aromatic aldehyde and phenolic compound are important chemical intermediates. There are strict requirements of process conditions and relative high costs to get fuel gas from direct hydrothermal gasification of lignin. However, further studies on improving gasification of lignin seem necessary in order to get fuel gas from hydrothermal gasification of the whole biomass.

423 citations

Journal ArticleDOI
TL;DR: Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery and high enzymatic convertibility to glucose, and aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH.

404 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between the composition of catalysts and their activity in reducing both phenol concentration and total organic carbon (TOC) by co-precipitation.
Abstract: Mn–Ce–O composite catalysts have been widely used in sub- and supercritical catalytic wet oxidation of toxic organics contained in aqueous streams. In order to investigate their composition–activity relationship, 11 samples with Ce/(Mn+Ce) atomic bulk ratios ranging from 0 to 100% were prepared by co-precipitation. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch slurry reactor using oxygen as the oxidizing agent under mild reaction conditions. The results showed that the catalytic activity was greatly influenced by the catalyst composition. The catalyst with Mn/Ce ratio=6/4 was found to be the most active in reducing both phenol concentration and total organic carbon (TOC). All catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), temperature programmed reduction (TPR) and nitrogen adsorption techniques. Systematic shifts in binding energy, diffraction angle, and reduction temperature were observed in the XPS, XRD and TPR spectra, respectively. XPS and XRD data revealed the occurrence of significant interactions between Mn and Ce oxides, resulting in the evolution of textural, structural and oxidation state with composition. TPR analysis showed that the interaction between Mn and Ce greatly improved the oxygen storage capacity of manganese and cerium oxides as well as oxygen mobility on the surface of catalyst. Catalytic active sites have been ascribed to manganese oxide species exhibiting higher oxidation state. Furthermore, XPS revealed that the most active catalyst, i.e. Mn/Ce 6/4, exhibits an electron-rich surface which may be very important in the activation of adsorbed oxygen.

403 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an update on the development of commercial catalytic wet air oxidation (CWAO) processes, which started as early as the mid-fifties in the United States.

397 citations

Journal ArticleDOI
TL;DR: Titanium dioxide nanoparticles of both anatase and rutile phases were synthesized by hydrothermal treatment of microemulsions, and their photocatalytic activity for wet oxidation of phenol w...
Abstract: Titanium dioxide (TiO2) nanoparticles of both anatase and rutile phases were synthesized by hydrothermal treatment of microemulsions, and their photocatalytic activity for wet oxidation of phenol w ...

396 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
87% related
Oxide
213.4K papers, 3.6M citations
82% related
Aqueous solution
189.5K papers, 3.4M citations
82% related
Catalysis
400.9K papers, 8.7M citations
81% related
Nanoparticle
85.9K papers, 2.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202233
202171
202096
2019116
2018128