scispace - formally typeset
Search or ask a question
Topic

Wetting transition

About: Wetting transition is a research topic. Over the lifetime, 2836 publications have been published within this topic receiving 114893 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.
Abstract: The wetting of solids by liquids is connected to physical chemistry (wettability), to statistical physics (pinning of the contact line, wetting transitions, etc.), to long-range forces (van der Waals, double layers), and to fluid dynamics. The present review represents an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.

6,042 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: In this article, the roughness of a solid is discussed, and it is shown that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness.
Abstract: We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

2,219 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that in any two-phase mixture of fluids near their critical point, contact angles against any third phase become zero in that one of the critical phases completely wets the third phase and excludes contact with the other critical phase.
Abstract: It is shown that in any two‐phase mixture of fluids near their critical point, contact angles against any third phase become zero in that one of the critical phases completely wets the third phase and excludes contact with the other critical phase. A surface layer of the wetting phase continues to exist under a range of conditions when this phase is no longer stable as a bulk. At some temperature below the critical, this perfect wetting terminates in what is described as a first‐order transition of the surface. This surface first‐order transition may exhibit its own critical point. The theory is qualitatively in agreement with observations.

1,574 citations


Network Information
Related Topics (5)
Phase (matter)
115.6K papers, 2.1M citations
87% related
Particle
96.5K papers, 1.9M citations
83% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
Polymer
131.4K papers, 2.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202360
202294
202148
202041
201940
201840