scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, ground-based measurements with millijansky-level sensitivity of GD 362 were reported to be a second single white dwarf with an infrared excess, which can be explained by emission from a passive, flat, opaque dust disk that lies within the Roche radius of the white dwarf.
Abstract: Eighteen years after an infrared excess was discovered associated with the white dwarf G29-38, we report ground-based measurements (JHKsKL'N') with millijansky-level sensitivity of GD 362 that show it to be a second single white dwarf with an infrared excess. As a first approximation, the excess around GD 362, which amounts to ~3% of the total stellar luminosity, can be explained by emission from a passive, flat, opaque dust disk that lies within the Roche radius of the white dwarf. The dust may have been produced by the tidal disruption of a large parent body such as an asteroid. Accretion from this circumstellar disk could account for the remarkably high abundance of metals in the star's photosphere.

158 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe.
Abstract: Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M ☉ of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s–1. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

158 citations

Journal ArticleDOI
TL;DR: In this paper, a general account of the observed global properties of single stars of low, intermediate, and high mass, together with their theoretical Hertzsprung-Russell diagram evolution, is given to the observed properties of various evolved close binaries.
Abstract: After presenting a general account of the observed global properties of single stars of low, intermediate, and high mass, together with their theoretical Hertzsprung-Russell diagram evolution, attention is given to the observed properties of various evolved close binaries and to an assessment of the value of comparisons between observation and crude theory in characterizing the physics of mass transfer within interacting binary systems Detailed consideration is then undertaken of such topics as stellar evolution in globular clusters, interior star changes due to nucleosynthesis and mixing, asymptotic giant branch stars of intermediate mass, the response of white dwarfs in binary systems to mass accretion, and scenarios for binary star evolution tending toward close white dwarf pairs

158 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of merged low-mass double white dwarfs which become low-luminosity (or high-gravity) extreme helium stars was examined, and the merging process was approximated by the rapid accretion of matter, consisting mostly of helium, on to a helium white dwarf.
Abstract: We have examined the evolution of merged low-mass double white dwarfs which become low-luminosity (or high-gravity) extreme helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a helium white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. As the helium-burning shell moves inwards with repeating shell flashes, the effective temperature gradually increases as the star evolves towards the helium main sequence. When the mass interior to the helium-burning shell is approximately 0.25 M⊙, the star enters a regime where it is pulsationally unstable. We have obtained radial pulsation periods for these models. These models have properties very similar to those of the pulsating helium star V652 Her. We have compared the rate of period change of the theoretical models with that observed in V652 Her, as well as with its position on the Hertzsprung–Russell diagram. We conclude that the merger between two helium white dwarfs can produce a star with properties remarkably similar to those observed in at least one extreme helium star, and is a viable model for their evolutionary origin. Such helium stars will evolve to become hot subdwarfs close to the helium main sequence. We also discuss the number of low-luminosity helium stars in the Galaxy expected for our evolution scenario.

158 citations

Journal ArticleDOI
Abstract: We present a large parameter study where we investigate the structure of white dwarf (WD) merger remnants after the dynamical phase. A wide range of WD masses and compositions are explored, and we also probe the effect of different initial conditions. We investigated the degree of mixing between the WDs, the conditions for detonations as well as the amount of gas ejected. We find that systems with lower mass ratios have more total angular momentum and as a result more mass is flung out in a tidal tail. Nuclear burning can affect the amount of mass ejected. Many WD binaries that contain a helium-rich WD achieve the conditions to trigger a detonation. In contrast, for carbon-oxygen-transferring systems, only the most massive mergers with a total mass M greater than or similar to 2.1 M-circle dot detonate. Even systems with lower mass may detonate long after the merger if the remnant remains above the Chandrasekhar mass and carbon is ignited at the centre. Finally, our findings are discussed in the context of several possible observed astrophysical events and stellar systems, such as hot subdwarfs, R Coronae Borealis stars, single massive WDs, supernovae of Type Ia and other transient events. A large data base containing 225 WD merger remnants is made available via a dedicated web page.

158 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515