scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
27 Sep 2012-Nature
TL;DR: In this paper, it was shown that none of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and they can firmly exclude all giant and subgiant stars from being companions of the progenitor.
Abstract: Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion(1). The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star(2,3) (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf(3,4) (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel(5). Both channels might contribute to the production of type Ia supernovae(6,7), but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned(10). More recently, observations have restricted surviving companions to be small, main-sequence stars(11-13), ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

107 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the ionization of the local interstellar medium is maintained by a strong EUV flux from nearby stars and hot gases, rather than an incomplete recovery from a past, more highly ionized condition.
Abstract: FUSE spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495 and WD 2331-475 cover the absorption features out of the ground electronic states of N I, N II, N III, O I and Ar I in the far ultraviolet, providing new insights on the origin of the partial ionization of the Local Interstellar Medium (LISM), and for the case of G191-B2B, the interstellar cloud that immediately surrounds the solar system. Toward these targets the interstellar abundances of Ar I, and sometimes N I, are significantly below their cosmic abundances relative to H I. In the diffuse interstellar medium, these elements are not likely to be depleted onto dust grains. Generally, we expect that Ar should be more strongly ionized than H (and also O and N whose ionizations are coupled to that of H via charge exchange reactions) because the cross section for the photoionization of Ar I is very high. Our finding that Ar I/H I is low may help to explain the surprisingly high ionization of He in the LISM found by other investigators. Our result favors the interpretation that the ionization of the local medium is maintained by a strong EUV flux from nearby stars and hot gases, rather than an incomplete recovery from a past, more highly ionized condition.

107 citations

Journal ArticleDOI
Edo Berger1
TL;DR: In this article, the authors summarize the current knowledge of the galactic and sub-galactic environments of short gamma-ray bursts, and use these observations to draw inferences about the progenitor population.

107 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present limits on planetary companions to pulsating white dwarf stars, and conclude that a planet is the most plausible explanation based on the data available, but do not discuss other possible explanations for the observed signal.
Abstract: We present limits on planetary companions to pulsating white dwarf stars. A subset of these stars exhibit extreme stability in the period and phase of some of their pulsation modes; a planet can be detected around such a star by searching for periodic variations in the arrival time of these pulsations. We present limits on companions greater than a few Jupiter masses around a sample of 15 white dwarf stars as part of an ongoing survey. One star shows a variation in arrival time consistent with a 2MJ planet in a 4.5 yr orbit. We discuss other possible explanations for the observed signal and conclude that a planet is the most plausible explanation based on the data available.

107 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the main properties expected for the stable magnetic configurations in these stars from physical arguments and the ways these properties may determine the modes of decay of these configurations, and argue that the main mode of decay for these configurations are processes that lift the constraints set by stable stratification, such as heat diffusion in main-sequence envelopes and white dwarfs, and beta decays or particle diffusion in neutron stars.
Abstract: Context. Long-lived, large-scale magnetic field configurations exist in upper main sequence, white dwarf, and neutron stars. Externally, these fields have a strong dipolar component, while their internal structure and evolution are uncertain but highly relevant to several problems in stellar and high-energy astrophysics. Aims. We discuss the main properties expected for the stable magnetic configurations in these stars from physical arguments and the ways these properties may determine the modes of decay of these configurations. Methods. We explain and emphasize the likely importance of the non-barotropic, stable stratification of matter in all these stars (due to entropy gradients in main-sequence envelopes and white dwarfs, due to composition gradients in neutron stars). We first illustrate it in a toy model involving a single, azimuthal magnetic flux tube. We then discuss the effect of stable stratification or its absence on more general configurations, such as axisymmetric equilibria involving poloidal and toroidal field components. We argue that the main mode of decay for these configurations are processes that lift the constraints set by stable stratification, such as heat diffusion in main-sequence envelopes and white dwarfs, and beta decays or particle diffusion in neutron stars. We estimate the time scales for these processes, as well as their interplay with the cooling processes in the case of neutron stars. Results. Stable magneto-hydrostatic equilibria appear to exist in stars whenever the matter in their interior is stably stratified (not barotropic). These equilibria are not force-free and not required to satisfy the Grad-Shafranov equation, but they do involve both toroidal and poloidal field components. In main sequence stars with radiative envelopes and in white dwarfs, heat diffusion is not fast enough to make these equilibria evolve over the stellar lifetime. In neutron stars, a strong enough field might decay by overcoming the compositional stratification through beta decays (at the highest field strengths) or through ambipolar diffusion (for somewhat weaker fields). These processes convert magnetic energy to thermal energy, and they occur at significant rates only once the latter is less than the former; therefore, they substantially delay the cooling of the neutron star, while slowly decreasing its magnetic energy.

107 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515