scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that for a 1.00-solar-mass white dwarf it is impossible to achieve mass ejection without an energy generation of approximately 10 to the 16th ergs/g/sec.
Abstract: Results of a computation of a variety of evolutionary sequences involving thermonuclear runaways in the hydrogen-rich envelopes of 1.00-solar-mass carbon-oxygen white dwarfs. The evidence concerning the location of the outburst in the nova system is reexamined, and it is concluded that the white dwarf is the seat of the outburst. An order-of-magnitude argument is presented which indicates that for a 1.00-solar-mass white dwarf it is impossible to achieve mass ejection without an energy generation of approximately 10 to the 16th ergs/g/sec. A description is given of models with low nuclear enhancements that do not produce an outburst, although their evolution has certain implications for the cause of the dwarf-nova outburst. The results for models that produced a nova outburst are then presented, and on the basis of these results it is found possible to explain continuous ejection, Kukarkin and Parenago's (1934) relationship, and other gross features of the nova phenomena.

104 citations

Journal ArticleDOI
TL;DR: In this article, the surface chemical abundances of the donors in AM CVn stars and ultra-compact X-ray binaries were studied with emphasis on the surface chemistry of donors in these systems.
Abstract: We study the formation of ultra-compact binaries (AM CVn stars and ultra-compact X-ray binaries) with emphasis on the surface chemical abundances of the donors in these systems. Hydrogen is not convincingly detected in the spectra of any these systems. Three different proposed formation scenarios involve different donor stars, white dwarfs, helium stars or evolved main-sequence stars. Using detailed evolutionary calculations we show that the abundances of helium white dwarf donors and evolved main-sequence stars are close to equilibrium CNOprocessed material, and the detailed abundances correlate with the core temperature and thus mass of the main-sequenceprogenitors. Evolved main-sequence donors typically have traces of H left. For hybrid or carbon/oxygen white dwarf donors, the carbon and oxygen abundances depend on the temperature of the helium burning and thus on the helium core mass of the progenitors. For helium star donors in addition to their mass, t he abundances depend strongly on the amount of helium burnt before mass transfer starts and can range from unprocessed and thus almost equal to CNO-processed matter, to strongly processed and thus C/O rich and N-deficient. We briefly discuss the relative frequency of the se cases for helium star donors, based on population synthesis results. Finally we give diagnostics for applying our results to observed systems and find that the most important test is the N /C ratio, which can indicate the formation scenario as well as, in some cases, the mass of the progenitor of the donor. In addition, if observed, the N/O, O/He and O/C ratios can distinguish between helium star and white dwarf donors. Applied to the known systems we find evide nce for white dwarf donors in the AM CVn systems GP Com, CE 315 and SDSS J0804+16 and evide nce for hybrid white dwarf or very evolved helium star donors in the ultra-compact X-ray binaries 4U 1626-67 and 4U 0614+09.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented mid-infrared photometry of 124 white dwarf stars with the Spitzer Space Telescope, where objects were observed simultaneously at 4.5 and 8.0 μm with sensitivities better than 0.1 mJy.
Abstract: We present mid-infrared photometry of 124 white dwarf stars with the Spitzer Space Telescope. Objects were observed simultaneously at 4.5 and 8.0 μm with sensitivities better than 0.1 mJy. This data set can be used to test models of white dwarf atmospheres in a new wavelength regime, as well as to search for planetary companions and debris disks.

104 citations

Journal ArticleDOI
TL;DR: In this article, the authors present three dimensional hydrodynamical simulations of the relatively neglected mergers of white dwarfs and black holes, which can be used to predict accretion rates for white dwarf and black hole masses which are not simulated in this paper.
Abstract: The merger of compact binaries, especially black holes and neutron stars, is frequently invoked to explain gamma-ray bursts (GRB's). In this paper, we present three dimensional hydrodynamical simulations of the relatively neglected mergers of white dwarfs and black holes. During the merger, the white dwarf is tidally disrupted and sheared into an accretion disk. Nuclear reactions are followed and the energy release is negligible. Peak accretion rates are ~0.05 Msun/s (less for lower mass white dwarfs) lasting for approximately a minute. Many of the disk parameters can be explained by a simple analytic model which we derive and compare to our simulations. This model can be used to predict accretion rates for white dwarf and black hole (or neutron star) masses which are not simulated in this paper. Although the mergers studied here create disks with larger radii, and longer accretion times than those from the merger of double neutron stars, a larger fraction of the merging star's mass becomes part of the disk. Thus the merger of a white dwarf and a black hole could produce a long duration GRB. The event rate of these mergers may be as high as 1/Myr per galaxy.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present orbital and atmospheric parameters and put constraints on the nature of the companions of 12 close hot subdwarf B star (sdB) binaries found in the course of the MUCHFUSS project.
Abstract: The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions like massive white dwarfs (M > 1.0 M⊙), neutron stars, or stellar-mass black holes. The existence of such systems is predicted by binary evolution theory, and recent discoveries indicate that they exist in ou r Galaxy. We present orbital and atmospheric parameters and put constraints on the nature of the companions of 12 close hot subdwarf B star (sdB) binaries found in the course of the MUCHFUSS project. The systems show periods between 0.14 and 7.4 days. In nine cases the nature of the companions cannot be constrained unambiguously whereas three systems most likely have white dwarf companions. We find that the companion to SDSS J083006.17+475150.3 is likely to be a rare example of a low-mass helium-core white dwarf. SDSS J095101.28+034757.0 shows an excess in the infrared that probably originates from a third companion in a wide orbit, which makes this system the second candidate hierarchical triple system containing an sdB star. SDSS J113241.58−063652.8 is the first helium deficient sdO star with a confirmed close companion. This study brings to 142 the number of sdB binaries with orbital periods of less than 30 days and with measured mass functions. We present an analysis of the minimum companion mass distribution and show that it is bimodal. One peak around 0.1 M⊙ corresponds to the low-mass main sequence (dM) and substellar companions. The other peak around 0.4 M⊙ corresponds to the white dwarf companions. The derived masses for the white dwarf companions are significantly lower than the average mass for single ca rbonoxygen white dwarfs. In a Teff ‐ log g diagram of sdB+dM companions, we find signs that the sdB components are more massive than the rest of the sample. The full sample was compared to the known population of extremely low-mass white dwarf binaries as well as short-period white dwarfs with main sequence companions. Both samples show a significantly di fferent companion mass distribution indicating either different selection effects or different evolutionary paths. We identified 16 systems where the dM companion will fill its Roche Lobe within a Hubble time and will evolve into a cataclysmic variable; two of them will have a brown dwarf as donor star. Twelve systems with confirmed white dwarf companions will merge within a Hubble time, two of them having a mass ratio to evolve into a stable AM CVn-type binary and another two which are potential supernova Ia progenitor systems. The remaining eight systems will most likely merge and form RCrB stars or massive C/O white dwarfs depending on the structure of the white dwarf companion.

104 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515