scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simulation of a delayed detonation in a Chandrasekhar-mass white dwarf and a violent merger of two white dwarfs (WDs) was used to constrain SN Ia explosion scenarios.
Abstract: The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs (WDs)—realizations of explosion models appropriate for two of the most widely discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the 55Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect.

244 citations

Journal ArticleDOI
TL;DR: In this article, the results of nucleosynthesis calculations based on multi-dimensional (2D and 3D) hydrodynamical simulations of the thermonuclear burning phase in type Ia supernovae (hereafter SN la) are presented.
Abstract: We present the results of nucleosynthesis calculations based on multi-dimensional (2D and 3D) hydrodynamical simulations of the thermonuclear burning phase in type Ia supernovae (hereafter SN la). The detailed nucleosynthetic yields of our explosion models are calculated by post-processing the ejecta, using passively advected tracer particles. The nuclear reaction network employed in computing the explosive nucleosynthesis contains 383 nuclear species, ranging from neutrons, protons, and α-particles to 98 Mo. Our models follow the common assumption that SN Ia are the explosions of white dwarfs that have approached the Chandrasekhar mass (M ch ∼ 1.39), and are disrupted by thermonuclear fusion of carbon and oxygen. But in contrast to 1D models which adjust the burning speed to reproduce lighteurves and spectra, the thermonuclear burning model applied in this paper does not contain adjustable parameters. Therefore variations of the explosion energies and nucleosynthesis yields are dependent on changes of the initial conditions only. Here we discuss the nucleosynthetic yields obtained in 2D and 3D models with two different choices of ignition conditions (centrally ignited, in which the spherical initial flame geometry is perturbated with toroidal rings, and bubbles, in which multi-point ignition conditions are simulated), but keeping the initial composition of the white dwarf unchanged. Constraints imposed on the hydrodynamical models from nucleosynthesis as well as from the radial velocity distribution of the elements are discussed in detail. We show that in our simulations unburned C and O varies typically from ∼40% to ∼50% of the total ejected material. Some of the unburned material remains between the flame plumes and is concentrated in low velocity regions at the end of the simulations. This effect is more pronounced in 2D than in 3D and in models with a small number of (large) ignition spots. The main differences between all our models and standard 1D computations are, besides the higher mass fraction of unburned C and O, the C/O ratio (in our case is typically a factor of 2.5 higher than in ID computations), and somewhat lower abundances of certain intermediate mass nuclei such as S, Cl, Ar, K, and Ca, and of 56 Ni. We also demonstrate that the amount of 56 Ni produced in the explosion is a very sensitive function of density and temperature. Because explosive C and O burning may produce the iron-group elements and their isotopes in rather different proportions one can get different 56 Ni-fractions (and thus supernova luminosities) without changing the kinetic energy of the explosion. Finally, we show that we need the high resolution multi-point ignition (bubbles) model to burn most of the material in the center (demonstrating that high resolution coupled with a large number of ignition spots is crucial to get rid of unburned material in a pure deflagration SN Ia model).

243 citations

Journal ArticleDOI
TL;DR: In this paper, the formation and evolution of hydrogen-deficient post-AGB white dwarfs is studied in the context of a double-diffusive mixing-length theory of convection.
Abstract: We explore the formation and evolution of hydrogen-deficient post-AGB white dwarfs. To this end, we compute the complete evolution of an initially 2.7 Mstar from the zero-age main sequence through the thermally pulsing and mass-loss phases to the white dwarf stage. Particular attention is given to the chemical abundance changes during the whole evolution. A time-dependent scheme for the simultaneous treatment of abundance changes caused by nuclear reactions, diffusive overshoot- ing, salt fingers and convection is considered. We employed the double-diffusive mixing-length theory of convection for fluids with composition gradients. The study can therefore be considered as a test of its performance in low-mass stars. Also, time- dependent element diffusion for multicomponent gases is taken into account during the white dwarf evolution. The evolutionary stages corresponding to the last helium thermal pulse on the early white-dwarf cooling branch and the following born-again episode are carefully explored. Relevant aspects for PG 1159 stars and DB white dwarf evolution are studied in the framework of these new evolutionary models that take into account the history of the white dwarf progenitor. The scope of the calculations is extended to the domain of the helium-rich, carbon-contaminated DQ white dwarfs with the aim of exploring the plausibility of the evolutionary connection PG 1159-DB-DQ. In this regard, the implications for the double-layered chemical structure in pulsating DB white dwarfs is investigated. We examine the consequences of mass-loss episodes during the PG 1159 stage for the chemical stratification of the outer layer of DB and DQ white dwarfs.

243 citations

Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: Ransom et al. as mentioned in this paper reported precision timing and multi-wavelength observations of a unique object, the millisecond pulsar PSR J0337+1715, in orbit with two white dwarf companions.
Abstract: Precision timing and multiwavelength observations of a millisecond pulsar in a triple system show that the gravitational interactions between the bodies are strong; this allows the mass of each body to be determined accurately and means that the triple system will provide precise tests of the strong equivalence principle of general relativity. Millisecond pulsars act as high-precision celestial clocks, and astronomers can use them to test aspects of basic physics and astrophysics. A triple system containing a radio pulsar could provide measurements of the interior structures of the bodies and a test of theories of gravity, but the only previously known system with a millisecond pulsar shows only weak interactions. Scott Ransom et al. report precision timing and multiwavelength observations of a unique object, the millisecond pulsar PSR J0337+1715, in orbit with two white dwarf companions. Strong gravitational interactions are apparent in this triple system, making it possible to estimate the masses of the pulsar and the two white dwarf companions, as well as the inclinations of the orbits. The surprisingly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from known stellar systems. Gravitationally bound three-body systems have been studied for hundreds of years1,2 and are common in our Galaxy3,4. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies5 and test theories of gravity6, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) , where is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) and 0.4101(3) ), as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

243 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time.
Abstract: It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 M{sub Sun }. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes (BHs). However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars (NSs) and BHs. The heaviest NSs reach a maximum of two solar masses, while the lightest BHs are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower-mass NSs and heavier BHs. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapsemore » supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 ms) timescale.« less

242 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515