scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a photometric and spectroscopic study of the white dwarf population of the populous, intermediate-age open cluster M35 (NGC 2168) is presented.
Abstract: We present a photometric and spectroscopic study of the white dwarf (WD) population of the populous, intermediate-age open cluster M35 (NGC 2168); this study expands upon our previous study of the WDs in this cluster. We spectroscopically confirm 14 WDs in the field of the cluster: 12 DAs, 1 hot DQ, and 1 DB star. For each DA, we determine the WD mass and cooling age, from which we derive each star's progenitor mass. These data are then added to the empirical initial-final mass relation (IFMR), where the M35 WDs contribute significantly to the high-mass end of the relation. The resulting points are consistent with previously published linear fits to the IFMR, modulo moderate systematics introduced by the uncertainty in the star cluster age. Based on this cluster alone, the observational lower limit on the maximum mass of WD progenitors is found to be ~5.1 M ? ? 5.2 M ? at the 95% confidence level; including data from other young open clusters raises this limit to as high as 7.1 M ?, depending on the cluster membership of three massive WDs and the core composition of the most massive WDs. We find that the apparent distance modulus and extinction derived solely from the cluster WDs ((m ? M) V = 10.45 ? 0.08 and E(B-V) = 0.185 ? 0.010, respectively) is fully consistent with that derived from main-sequence fitting techniques. Four M35 WDs may be massive enough to have oxygen-neon cores; the assumed core composition does not significantly affect the empirical IFMR. Finally, the two non-DA WDs in M35 are photometrically consistent with cluster membership; further analysis is required to determine their memberships.

237 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the magnetic Tayler instability and argue that it saturates when turbulent dissipation of the perturbed magnetic field energy is equal to magnetic energy generation via winding, leading to larger magnetic field amplitudes, more efficient AM transport, and smaller shears than predicted by the classic Tayler-Spruit dynamo.
Abstract: The angular momentum (AM) evolution of stellar interiors, along with the resulting rotation rates of stellar remnants, remains poorly understood. Asteroseismic measurements of red giant stars reveal that their cores rotate much faster than their surfaces, but much slower than theoretically predicted, indicating an unidentified source of AM transport operates in their radiative cores. Motivated by this, we investigate the magnetic Tayler instability and argue that it saturates when turbulent dissipation of the perturbed magnetic field energy is equal to magnetic energy generation via winding. This leads to larger magnetic field amplitudes, more efficient AM transport, and smaller shears than predicted by the classic Tayler-Spruit dynamo. We provide prescriptions for the effective AM diffusivity and incorporate them into numerical stellar models, finding they largely reproduce (1) the nearly rigid rotation of the Sun and main sequence stars, (2) the core rotation rates of low-mass red giants during hydrogen shell and helium burning, and (3) the rotation rates of white dwarfs. We discuss implications for stellar rotational evolution, internal rotation profiles, rotational mixing, and the spins of compact objects.

237 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of white dwarfs accreting hydrogen-rich matter were revisited by constructing steady state models in which hydrogen shell burning consumes hydrogen at the same rate as the white dwarf accretes it.
Abstract: We revisit the properties of white dwarfs accreting hydrogen-rich matter, by constructing steady state models in which hydrogen shell burning consumes hydrogen at the same rate as the white dwarf accretes it. We obtain steady models for various accretion rates and white dwarf masses. We confirm that these are thermally stable only when the accretion rate is higher than ~10-7 M☉ yr-1. We show that recent models of quiescent "surface hydrogen burning" for a much wider range of accretion rates result from the use of too large a zone mass in the outer part of the models; hydrogen burning must occur in a much thinner layer. A comparison of the positions on the H-R diagram suggests that most of the luminous supersoft X-ray sources are white dwarfs accreting matter at rates high enough that the hydrogen-burning shell is thermally stable. Implications for the progenitors of Type Ia supernovae are discussed.

237 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright).
Abstract: Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 M☉ of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated.

236 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release.
Abstract: We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an inhomogeneous mixture of unburned carbon and oxygen with intermediate-mass and iron-group elements in central parts of the star. During the subsequent detonation stage, a supersonic detonation wave propagates through the material unburned by the deflagration. The total energy released in this delayed-detonation process, (1.3-1.6)x10^51 ergs, is consistent with a typical range of kinetic energies obtained from observations. In contrast to the deflagration model that releases only about 0.6x10^51 ergs, the delayed-detonation model does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between three-dimensional simulations and observations, and makes a delayed detonation the mostly likely mechanism for Type Ia supernova explosions.

235 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515