scispace - formally typeset
Search or ask a question
Topic

White dwarf

About: White dwarf is a research topic. Over the lifetime, 15004 publications have been published within this topic receiving 430597 citations. The topic is also known as: degenerate dwarf.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of a deep Hubble Space Telescope (HST) exposure of the nearby globular cluster NGC6397 are presented, focusing on the white dwarf cooling sequence.
Abstract: We present the results of a deep Hubble Space Telescope (HST) exposure of the nearby globular cluster NGC6397, focussing attention on the cluster's white dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using both artificial star tests and the detectability of background galaxies at fainter magnitudes, that the cutoff is real and represents the truncation of the white dwarf luminosity function in this cluster. We perform a detailed comparison between cooling models and the observed distribution of white dwarfs in colour and magnitude, taking into account uncertainties in distance, extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model uncertainties. After marginalising over these variables, we obtain values for the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47 \pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf initial-final mass relations are in good agreement with other independent determinations, and the cluster age is consistent with, but more precise than, prior determinations made using the main sequence turnoff method. In particular, within the context of the currently accepted \Lambda CDM cosmological model, this age places the formation of NGC6397 at a redshift z=3, at a time when the cosmological star formation rate was approaching its peak.

179 citations

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass, and that RS Ophiuchi is therefore a progenitor of the type of supernova (type Ia) integral to studies of the expansion of the Universe.
Abstract: Stellar explosions such as novae and supernovae produce most of the heavy elements in the Universe. The onset of a nova is well understood as driven by runaway thermonuclear fusion reactions on the surface of a white dwarf in a binary star system; but the structure, dynamics and mass of the ejecta are not well known. In rare cases, the white dwarf is embedded in the wind nebula of a red-giant companion, and the explosion products plough through the nebula and produce X-ray emission. Here we report X-ray observations of such an event, from the eruption of the recurrent nova RS Ophiuchi. The hard X-ray emission from RS Ophiuchi early in the eruption emanates from behind a blast wave, or outward-moving shock wave, that expanded freely for less than 2 days and then decelerated owing to interaction with the nebula. The X-rays faded rapidly, suggesting that the blast wave deviates from the standard spherical shell structure. The early onset of deceleration indicates that the ejected shell had a low mass, the white dwarf has a high mass, and that RS Ophiuchi is therefore a progenitor of the type of supernova (type Ia) integral to studies of the expansion of the Universe.

179 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed three-body simulations of exosystems with two massive planets, from the endpoint of formation to several Gyr into the WD phase of the host star.
Abstract: Exoplanets have been observed at many stages of their host star's life, including the main-sequence (MS), subgiant and red giant branch stages. Also, polluted white dwarfs (WDs) likely represent dynamically active systems at late times. Here, we perform three-body simulations which include realistic post-MS stellar mass-loss and span the entire lifetime of exosystems with two massive planets, from the endpoint of formation to several Gyr into the WD phase of the host star. We find that both MS and WD systems experience ejections and star-planet collisions (Lagrange instability) even if the planet-planet separation well-exceeds the analytical orbit-crossing (Hill instability) boundary. Consequently, MS-stable planets do not need to be closely packed to experience instability during the WD phase. This instability may pollute the WD directly through collisions, or, more likely, indirectly through increased scattering of smaller bodies such as asteroids or comets. Our simulations show that this instability occurs predominately between tens of Myr to a few Gyr of WD cooling. (Less)

178 citations

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of a large spectroscopic and photometric sample of DZ white dwarfs based on their latest model atmosphere calculations is presented, and the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz (12 stars) and 147 new DZwhite dwarfs discovered in the SDSS are analyzed.
Abstract: We present a detailed analysis of a large spectroscopic and photometric sample of DZ white dwarfs based on our latest model atmosphere calculations. We revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs discovered in the SDSS. The inclusion of metals and hydrogen in our model atmosphere calculations leads to different atmospheric parameters than those derived from pure helium models. Calcium abundances are found in the range from log(Ca/He) = -12 to -8. We also find that fits of the coolest objects show peculiarities, suggesting that our physical models may not correctly describe the conditions of high atmospheric pressure encountered in the coolest DZ stars. We find that the mean mass of the 11 DZ stars with trigonometric parallaxes, M = 0.63 M☉, is significantly lower than that obtained from pure helium models, M = 0.78 M☉, and in much better agreement with the mean mass of other types of white dwarfs. We determine hydrogen abundances for 27% of the DZ stars in our sample, while only upper limits are obtained for objects with low-S/N spectroscopic data. We confirm with a high level of confidence that the accretion rate of hydrogen is at least 2 orders of magnitude smaller than that of metals (and up to 5 in some cases) to be compatible with the observations. We find a correlation between the hydrogen abundance and the effective temperature, suggesting for the first time empirical evidence of a lower temperature boundary for the hydrogen screening mechanism. Finally, we speculate on the possibility that the DZA white dwarfs could be the result of the convective mixing of thin hydrogen-rich atmospheres with the underlying helium convection zone.

178 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectically unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars.
Abstract: Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectively unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content [...] We focus on the convective-reactive episode in the very-late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund etal. (1999) determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out 3D hydrodynamic He-shell flash convection [...] we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone [...] we obtain significantly higher neutron densities (~few 10^15 1/cm^3) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr and Y by about 2 orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. [...] We determine how our results depend on uncertainties of nuclear reaction rates, for example for the C13(\alpha, n)O16 reaction.

177 citations


Network Information
Related Topics (5)
Galaxy
109.9K papers, 4.7M citations
98% related
Elliptical galaxy
20.9K papers, 1M citations
98% related
Star formation
37.4K papers, 1.8M citations
98% related
Active galactic nucleus
20.7K papers, 996.7K citations
98% related
Stars
64.3K papers, 1.9M citations
97% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022667
2021495
2020557
2019548
2018515